This article includes a list of general references, but it lacks sufficient corresponding inline citations .(September 2009) |
Polyamide-imides are either thermosetting or thermoplastic, amorphous polymers that have exceptional mechanical, thermal and chemical resistant properties. Polyamide-imides are used extensively as wire coatings in making magnet wire. They are prepared from isocyanates and TMA (trimellic acid-anhydride) in N-methyl-2-pyrrolidone (NMP). A prominent distributor of polyamide-imides is Solvay Specialty Polymers, which uses the trademark Torlon.
Polyamide-imides display a combination of properties from both polyamides and polyimides, such as high strength, melt processibility,[ clarification needed ] exceptional high heat capability, and broad chemical resistance.[ citation needed ] Polyamide-imide polymers can be processed into a wide variety of forms, from injection or compression molded parts and ingots, to coatings, films, fibers and adhesives. Generally these articles reach their maximum properties with a subsequent thermal cure process.
Other high-performance polymers in this same realm are polyetheretherketones and polyimides.
The currently popular commercial methods to synthesize polyamide-imides are the acid chloride route and the isocyanate route.
The earliest route to polyamide-imides is the condensation of an aromatic diamine, such as methylene dianiline (MDA) and trimellitic acid chloride (TMAC). Reaction of the anhydride with the diamine produces an intermediate amic acid. The acid chloride functionality reacts with the aromatic amine to give the amide bond and hydrochloric acid (HCl) as a by-product. In the commercial preparation of polyamideimides, the polymerization is carried out in a dipolar, aprotic solvent such as N-methylpyrrolidone (NMP), dimethylacetamide (DMAC), dimethylformamide (DMF), or dimethylsulfoxide (DMSO) at temperatures between 20–60 °C. The byproduct HCl must be neutralized in situ or removed by washing it from the precipitated polymer. Further thermal treatment of the polyamideimide polymer increases molecular weight and causes the amic acid groups to form imides with the evolution of water.
This is the primary route to polyamide-imides which are used as wire enamels. A diisocyanate, often 4,4’-methylenediphenyldiisocyanate (MDI), is reacted with trimellitic anhydride (TMA). The product achieved at the end of this process is a high molecular weight, fully imidized polymer solution with no condensation byproducts, since the carbon dioxide gas byproduct is easily removed. This form is convenient for the manufacture of wire enamel or coatings. The solution viscosity is controlled by stoichiometry, monofunctional reagents, and polymer solids. The typical polymer solids level is 35-45% and it may be diluted further by the supplier or user with diluents.
Polyamide-imides are commercially used for coatings and molded articles.
The product used mainly for coatings is sold in a powdered form and is roughly 50% imidized. One of the major uses is as a magnet wire enamel. The magnet wire enamel is made by dissolving the PAI powder in a strong, aprotic solvent such as N-methyl pyrrolidone. Diluents and other additives can be added to provide the correct viscosity for application to the copper or aluminum conductor. Application is typically done by drawing the conductor through a bath of enamel and then through a die to control coating thickness. The wire is then passed through an oven to drive off the solvent and cure the coating. The wire usually is passed through the process several times to achieve the desired coating thickness.
The PAI enamel is very thermally stable as well as abrasion and chemical resistant. PAI is often used over polyester wire enamels to achieve higher thermal ratings.
PAI is also used in decorative, corrosion resistant coatings for industrial uses, often in conjunction with fluoropolymers. The PAI aids in adhering the fluoropolymer to the metal substrate. They also find usage in non-stick cookware coatings. While solvents can be used, some water-borne systems are used. These are possible because the amide-imide contains acid functionality.
The polyamide-imides used for molded articles are also based on aromatic diamines and trimellitic acid chloride, but the diamines are different from those used in the products used for coatings and the polymer is more fully imidized prior to compounding and pelletizing. Resins for injection molding include unreinforced, glass-fiber reinforced, carbon fiber reinforced, and wear resistant grades. These resins are sold at a relatively low molecular weight so they can be melt processed by extrusion or injection-molding. The molded articles are then thermally treated for several days at temperatures up to 260 °C (500 °F). During this treatment, commonly referred to a postcure, the molecular weight increases through chain extension and the polymer gets much stronger and more chemically resistant. Prior to postcure, parts can be reground and reprocessed. After postcure, reprocessing is not practical.
Property | Test method | Units | Molded PAI |
---|---|---|---|
Tensile strength, ultimate | ASTM D 638 | MPa, average value | 91.6 |
Tensile modulus | ASTM D 638 | GPa, average value | 3.97 |
Tensile elongation | ASTM D 638 | % | 3.15 |
Flexural strength | ASTM D 790 | MPa | 133 |
Flexural modulus | ASTM D 638 | GPa | 4.58 |
Compressive strength | ASTM D 695 | MPa, average | 132 |
Izod impact strength | ASTM D 256 | J/m (ft-lb/in) average | 0.521 (1) |
Heat deflection temperature @ 264 psi | ASTM D 648 | °C (°F) | 273 (523) |
Coefficient of linear thermal expansion | ASTM D 696 | ppm/°C | 37.7 |
Volume resistivity | ASTM D 257 | ohm-cm, average | 8.10×1012 |
Density | ASTM D 792 | g/cm3 | 1.48 |
Water absorption, 24 hr | ASTM D 570 | % | 0.35 |
Property | Test method | Units | Neat PAI | 30% GF PAI | 30% CF PAI |
---|---|---|---|---|---|
Tensile strength | ASTM D 638 | MPa (kpsi) | 152 (22.0) | 221 (32.1) | 221 (32.0) |
Tensile modulus | ASTM D 638 | GPa (kpsi) | 4.5 (650) | 14.5 (2,110) | 16.5 (2,400) |
Tensile elongation | ASTM D 638 | % | 7.6 | 2.3 | 1.5 |
Flexural strength | ASTM D 790 | MPa (kpsi) | 241 (34.9) | 333 (48.3) | 350 (50.7) |
Flexural modulus | ASTM D 790 | GPa (kpsi) | 5.0 (730) | 11.7 (1,700) | 16.5 (2,400) |
Compressive strength | ASTM D 695 | MPa (kpsi) | 221 (32.1) | 264 (38.3) | 254 (36.9) |
Shear strength | ASTM D 732 | MPa (kpsi) | 128 (18.5) | 139 (20.1) | 119 (17.3) |
Izod impact strength | ASTM D 256 | J/m (ftlb/in) | 144 (2.7) | 80 (1.5) | 48 (0.9) |
Izod impact strength, unnotched | ASTM D 4812 | J/m (ftlb/in) | 1070 (20) | 530 (10) | 320 (6) |
Heat deflection temperature @ 264 psi | ASTM D 648 | °C (°F) | 278 (532) | 282 (540) | 282 (540) |
Coefficient linear thermal Expansion | ASTM D 696 | ppm/°C (ppm/°F) | 31 (17) | 16 (9) | 9 (5) |
Volume resistivity | ASTM D 257 | ohm-cm | 2e17 | 2e17 | |
Specific gravity | ASTM D 792 | 1.42 | 1.61 | 1.48 | |
Water absorption, 24 hr | ASTM D 570 | % | 0.33 | 0.24 | 0.26 |
Property | Test method | Units | 4275 | 4301 | 4435 | 4630 | 4645 |
---|---|---|---|---|---|---|---|
Tensile strength | ASTM D 638 | MPa (kpsi) | 117 (16.9) | 113 (16.4) | 94 (13.6) | 81 (11.8) | 114 (16.6) |
Tensile modulus | ASTM D 638 | GPa (kpsi) | 8.8 (1,280) | 6.8 (990) | 14.5 (2,100) | 7.4 (1,080) | 18.6 (2,700) |
Tensile elongation | ASTM D 638 | % | 2.6 | 3.3 | 1.0 | 1.9 | 0.8 |
Flexural strength | ASTM D 790 | MPa (kpsi) | 208 (30.2) | 215 (31.2) | 152 (22.0) | 131 (19.0) | 154 (22.4) |
Flexural modulus | ASTM D 790 | GPa (kpsi) | 7.3 (1.060) | 6.9 (1,000) | 14.8 (2,150) | 6.8 (990) | 12.4 (1,800) |
Compressive strength | ASTM D 695 | MPa (kpsi) | 123 (17.8) | 166 (24.1) | 138 (20.0) | 99 (14.4) | 157 (22.8) |
Izod impact strength, notched | ASTM D 256 | J/m (ft-lb/in) | 85 (1.6) | 64 (1.2) | 43 (0.8) | 48 (0.9) | 37 (0.7) |
Izod impact strength, unnotched | ASTM D 4812 | J/m (ft-lb/in) | 270 (5) | 430 (8) | 210 (4) | 160 (3) | 110 (2) |
Heat deflection temperature at 264 psi | ASTM D 648 | °C (°F) | 280 (536) | 279 (534) | 278 (532) | 280 (536) | 281 (538) |
Coefficient linear thermal expansion | ASTM D 696 | ppm/°C (ppm/°F) | 25 (14) | 25 (14) | 14 (8) | 16 (9) | 9 (3) |
Polyamide-imide resin is hygroscopic, and picks up ambient moisture. Before processing the resin, drying is required to avoid brittle parts, foaming, and other molding problems. The resin must be dried to a moisture content of 500 ppm or less. A desiccant dryer capable of maintaining a dew point of −40 °F (−40 °C) is recommended. If drying is done in pans or trays, put the resin in layers no more than 2 to 3 inches (5 to 8 cm) deep in drying trays. Dry for 24 hours at 250 °F, or 16 hours at 300 °F, or 8 hours at 350 °F. If drying at 350 °F (177 °C), limit drying time to 16 hours. For the injection molding press, a desiccant hopper dryer is recommended. The circulating air suction pipe should be at the base of the hopper, as near the feed throat as possible.
In general, modern reciprocating-screw injection molding presses with microprocessor controls capable of closed-loop control are recommended for molding PAI. The press should be fitted with a low compression ratio, constant taper screw. The compression ratio should be between 1.1 and 1.5 to 1, and no check device should be used. The starting mold temperatures are specified as follows:[ citation needed ]
Zone | Temp, °F | Temp, °C |
---|---|---|
Feed zone | 580 | 304 |
Middle zone | 620 | 327 |
Front zone | 650 | 343 |
Nozzle | 700 | 371 |
The mold temperature should be in the range of 325 °F to 425 °F (163 °C to 218 °C).
The high temperature and chemical resistance of polyamide-imides make them in principle suitable for membrane based gas separations. The separation of contaminants such as CO2, H2S, and other impurities from natural gas wells is an important industrial process. Pressures exceeding 1000 psia demand materials with good mechanical stability. The highly polar H2S and polarizable CO2 molecules can strongly interact with the polymer membranes causing swelling and plasticization [1] due to high levels of impurities. Polyamide-imides can resist plasticization because of the strong intermolecular interactions arising from the polyimide functions as well as the ability of the polymer chains to hydrogen bond with one another as a result of the amide bond. Although not currently used in any major industrial separation, polyamide-imides could be used for these types of processes where chemical and mechanical stability are required.
Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.
A thermoplastic, or thermosoftening plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.
Aramid fibers, short for aromatic polyamide, are a class of heat-resistant and strong synthetic fibers. They are used in aerospace and military applications, for ballistic-rated body armor fabric and ballistic composites, in marine cordage, marine hull reinforcement, as an asbestos substitute, and in various lightweight consumer items ranging from phone cases to tennis rackets.
In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.
Twaron is a para-aramid. It is a heat-resistant and strong synthetic fibre developed in the early 1970s by the Dutch company Akzo Nobel's division Enka BV, later Akzo Industrial Fibers. The research name of the para-aramid fibre was originally Fiber X, but it was soon called Arenka. Although the Dutch para-aramid fiber was developed only a little later than DuPont's Kevlar, the introduction of Twaron as a commercial product came much later than Kevlar due to financial problems at the Akzo company in the 1970s.
In biochemistry, cellulose acetate refers to any acetate ester of cellulose, usually cellulose diacetate. It was first prepared in 1865. A bioplastic, cellulose acetate is used as a film base in photography, as a component in some coatings, and as a frame material for eyeglasses; it is also used as a synthetic fiber in the manufacture of cigarette filters and playing cards. In photographic film, cellulose acetate film replaced nitrate film in the 1950s, being far less flammable and cheaper to produce.
In organic chemistry, an imide is a functional group consisting of two acyl groups bound to nitrogen. The compounds are structurally related to acid anhydrides, although imides are more resistant to hydrolysis. In terms of commercial applications, imides are best known as components of high-strength polymers, called polyimides. Inorganic imides are also known as solid state or gaseous compounds, and the imido group (=NH) can also act as a ligand.
Polyimide is a polymer containing imide groups belonging to the class of high-performance plastics. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, such as high temperature fuel cells, displays, and various military roles. A classic polyimide is Kapton, which is produced by condensation of pyromellitic dianhydride and 4,4'-oxydianiline.
An organic acid anhydride is an acid anhydride that is also an organic compound. An acid anhydride is a compound that has two acyl groups bonded to the same oxygen atom. A common type of organic acid anhydride is a carboxylic anhydride, where the parent acid is a carboxylic acid, the formula of the anhydride being (RC(O))2O. Symmetrical acid anhydrides of this type are named by replacing the word acid in the name of the parent carboxylic acid by the word anhydride. Thus, (CH3CO)2O is called acetic anhydride.Mixed (or unsymmetrical) acid anhydrides, such as acetic formic anhydride (see below), are known, whereby reaction occurs between two different carboxylic acids. Nomenclature of unsymmetrical acid anhydrides list the names of both of the reacted carboxylic acids before the word "anhydride" (for example, the dehydration reaction between benzoic acid and propanoic acid would yield "benzoic propanoic anhydride").
In polymer chemistry, step-growth polymerization refers to a type of polymerization mechanism in which bi-functional or multifunctional monomers react to form first dimers, then trimers, longer oligomers and eventually long chain polymers. Many naturally-occurring and some synthetic polymers are produced by step-growth polymerization, e.g. polyesters, polyamides, polyurethanes, etc. Due to the nature of the polymerization mechanism, a high extent of reaction is required to achieve high molecular weight. The easiest way to visualize the mechanism of a step-growth polymerization is a group of people reaching out to hold their hands to form a human chain—each person has two hands. There also is the possibility to have more than two reactive sites on a monomer: In this case branched polymers production take place.
Polyphthalamide is a subset of thermoplastic synthetic resins in the polyamide (nylon) family defined as when 55% or more moles of the carboxylic acid portion of the repeating unit in the polymer chain is composed of a combination of terephthalic (TPA) and isophthalic (IPA) acids. The substitution of aliphatic diacids by aromatic diacids in the polymer backbone increases the melting point, glass transition temperature, chemical resistance and stiffness.
Hot-melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is sticky when hot, and solidifies in a few seconds to one minute. Hot-melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.
An alkyd is a polyester resin modified by the addition of fatty acids and other components. Alkyds are derived from polyols and organic acids including dicarboxylic acids or carboxylic acid anhydride and triglyceride oils. The term alkyd is a modification of the original name "alcid", reflecting the fact that they are derived from alcohol and organic acids. The inclusion of a fatty acid confers a tendency to form flexible coatings. Alkyds are used in paints, varnishes and in moulds for casting. They are the dominant resin or binder in most commercial oil-based coatings. Approximately 200,000 tons of alkyd resins are produced each year. The original alkyds were compounds of glycerol and phthalic acid sold under the name Glyptal. These were sold as substitutes for the darker-colored copal resins, thus creating alkyd varnishes that were much paler in colour. From these, the alkyds that are known today were developed.
Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.
Hexamethylenediamine or hexane-1,6-diamine, is the organic compound with the formula H2N(CH2)6NH2. The molecule is a diamine, consisting of a hexamethylene hydrocarbon chain terminated with amine functional groups. The colorless solid (yellowish for some commercial samples) has a strong amine odor. About 1 billion kilograms are produced annually.
4,4′-Oxydianiline (ODA) is an organic compound with the formula O(C6H4NH2)2. It is an ether derivative of aniline. This colourless solid is a useful monomer and cross-linking agent for polymers, especially the polyimides, such as Kapton.
A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.
Upilex is a heat-resistant polyimide film that is the product of the polycondensation reaction between biphenyl tetracarboxylic dianhydride (BPDA) monomers and a diamine. Its properties include dimensional stability, low water absorption, high chemical resistance and high mechanical properties, high heat and chemical resistance. It was developed by UBE Industries. Upilex-S is the standard grade but other grades include Upilex-RN, VT, CA and SGA. Upilex-S is used when excellent mechanical properties are required. Upilex-RN possesses excellent molding processability, while Upilex-VT has superior heat bonding characteristics. General applications of Upilex include their use in flexible printed circuits, electric motor and generator insulation, high temperature wire and cable wrapping, and specialty pressure sensitive tapes. Polyimides have also been extensively studied in gas and humidity sensors, where the concentration is determined by monitoring the capacitance of modified Upilex films. With advantages of flexibility and easy functionalization, Upilex films are often used as substrate materials in biosensor platforms. For instance, it is possible to electropolymerize onto these films or attach enzymes to it for the detection of glucose.
Trimellitic anhydride chloride is a chemical compound used to produce polyamide-imide plastic.
Cardo polymers are a sub group of polymers where ring structures are pendent to the polymer backbone. The backbone carbons bonded to the pendent ring structures are quaternary centers. As such, the cyclic side group lies perpendicular to the plane of the extended polymer chain. These side rings are bulky structures which sterically hinder rotation of the backbone bonds; they also disrupt chain packing and thus create greater free volume than found in conventional polymer structures. The rotational restrictions placed on the polymer backbone increase the value of the characteristic ratio, leading to what is referred to as a "rigid" or "stiff" backbone. The sterically driven large rotational potential produces a high glass transition temperature and the disrupted packing yields comparatively high values for gas and other small molecule solubilities in these polymers. Because of these physical effects, recent advances in membranes used for gas separation have used cardo polymers.