Diamine

Last updated
Diamines General Formula V.1.svg
General structure of (primary) diamines. The primary amino groups (NH2) are marked blue,
R is a divalent organic radical (e.g. a para-phenylene group).

A diamine is an amine with exactly two amino groups. Diamines are used as monomers to prepare polyamides, polyimides, and polyureas. The term diamine refers mostly to primary diamines, as those are the most reactive. [1]

Contents

In terms of quantities produced, 1,6-diaminohexane (a precursor to Nylon 6-6) is most important, followed by ethylenediamine. [2] Vicinal diamines (1,2-diamines) are a structural motif in many biological compounds and are used as ligands in coordination chemistry. [3]

Aliphatic diamines

Linear

Branched

Derivatives of ethylenediamine are prominent:

Cyclic

Xylylenediamines

Xylylenediamines are classified as alkylamines since the amine is not directly attached to an aromatic ring.

Aromatic diamines

Three phenylenediamines are known: [4]

Various N-methylated derivatives of the phenylenediamines are known:

Examples with two aromatic rings include derivatives of biphenyl and naphthalene:

Related Research Articles

<span class="mw-page-title-main">Acridine</span> Chemical compound

Acridine is an organic compound and a nitrogen heterocycle with the formula C13H9N. Acridines are substituted derivatives of the parent ring. It is a planar molecule that is structurally related to anthracene with one of the central CH groups replaced by nitrogen. Like the related molecules pyridine and quinoline, acridine is mildly basic. It is an almost colorless solid, which crystallizes in needles. There are few commercial applications of acridines; at one time acridine dyes were popular, but they are now relegated to niche applications, such as with acridine orange. The name is a reference to the acrid odour and acrid skin-irritating effect of the compound.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.

<i>p</i>-Phenylenediamine Chemical compound

p-Phenylenediamine (PPD) is an organic compound with the formula C6H4(NH2)2. This derivative of aniline is a white solid, but samples can darken due to air oxidation. It is mainly used as a component of engineering polymers and composites like kevlar. It is also an ingredient in hair dyes and is occasionally used as a substitute for henna.

<span class="mw-page-title-main">Benzimidazole</span> Chemical compound

Benzimidazole is a heterocyclic aromatic organic compound. This bicyclic compound may be viewed as fused rings of the aromatic compounds benzene and imidazole. It is a white solid that appears in form of tabular crystals.

In organic chemistry, dihydroxybenzenes (benzenediols) are organic compounds in which two hydroxyl groups are substituted onto a benzene ring. These aromatic compounds are classed as phenols. There are three structural isomers: 1,2-dihydroxybenzene is commonly known as catechol, 1,3-dihydroxybenzene is commonly known as resorcinol, and 1,4-dihydroxybenzene is commonly known as hydroquinone.

In organic chemistry, an azo coupling is an organic reaction between a diazonium compound and another aromatic compound that produces an azo compound. In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile and the activated carbon act as a nucleophile. In most cases, including the examples below, the diazonium compound is also aromatic.

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. Ethylenediamine is the first member of the so-called polyethylene amines.

<i>o</i>-Phenylenediamine Chemical compound

o-Phenylenediamine (OPD) is an organic compound with the formula C6H4(NH2)2. This aromatic diamine is an important precursor to many heterocyclic compounds. It is isomeric with m-phenylenediamine and p-phenylenediamine.

<i>m</i>-Phenylenediamine Chemical compound

m-Phenylenediamine, also called 1,3-diaminobenzene, is an organic compound with the formula C6H4(NH2)2. It is an isomer of o-phenylenediamine and p-phenylenediamine. This aromatic diamine is a colourless solid that appears as needles, but turns red or purple on exposure to air due to formation of oxidation products. Samples often come as colourless flakes and may darken in storage.

<span class="mw-page-title-main">Cyclooctadiene</span>

A cyclooctadiene (sometimes abbreviated COD) is any of several cyclic diene with the formula (CH2)4(C2H2)2. Focusing only on cis derivatives, four isomers are possible: 1,2-, which is an allene, 1,3-, 1,4-, and 1,5-. Commonly encountered isomers are the conjugated isomer 1,3-cyclooctadiene and 1,5-cyclooctadiene, which is used as a ligand for transition metals. These dienes are colorless volatile liquids.

<span class="mw-page-title-main">Oxazines</span> E heterocyclic organic compounds containing one oxygen and one nitrogen atom

Oxazines are heterocyclic organic compounds containing one oxygen and one nitrogen atom in a cyclohexa-1,4-diene ring. Isomers exist depending on the relative position of the heteroatoms and relative position of the double bonds.

<span class="mw-page-title-main">Hexamethylenediamine</span> Chemical compound

Hexamethylenediamine is the organic compound with the formula H2N(CH2)6NH2. The molecule is a diamine, consisting of a hexamethylene hydrocarbon chain terminated with amine functional groups. The colorless solid (yellowish for some commercial samples) has a strong amine odor. About 1 billion kilograms are produced annually.

<span class="mw-page-title-main">2,4,6-Trimethylaniline</span> Chemical compound

2,4,6-Trimethylaniline is an organic compound with formula (CH3)3C6H2NH2. It is an aromatic amine that is of commercial interest as a precursor to dyes. It is prepared by selective mononitration of mesitylene, avoiding oxidation of the methyl groups. The resulting nitro compound is reduced to the aniline.

1,3-Diaminopropane, also known as trimethylenediamine, is a simple diamine with the formula H2N(CH2)3NH2. A colourless liquid with a fishy odor, it is soluble in water and many polar organic solvents. It is isomeric with 1,2-diaminopropane. Both are building blocks in the synthesis of heterocycles, such as those used in textile finishing, and coordination complexes. It is prepared by the amination of acrylonitrile followed by hydrogenation of the resulting aminopropionitrile.

<span class="mw-page-title-main">1,2-Diaminopropane</span> Chemical compound

1,2-Diaminopropane (propane-1,2-diamine) is organic compound with the formula CH3CH(NH2)CH2NH2. A colorless liquid, it is the simplest chiral diamine. It is used as a bidentate ligand in coordination chemistry.

<span class="mw-page-title-main">1,4-Naphthoquinone</span> Chemical compound

1,4-Naphthoquinone or para-naphthoquinone is a quinone derived from naphthalene. It forms volatile yellow triclinic crystals and has a sharp odor similar to benzoquinone. It is almost insoluble in cold water, slightly soluble in petroleum ether, and more soluble in polar organic solvents. In alkaline solutions it produces a reddish-brown color. Vitamin K is a derivative of 1,4-naphthoquinone. It is a planar molecule with one aromatic ring fused to a quinone subunit. It is an isomer of 1,2-naphthoquinone.

<span class="mw-page-title-main">1,4-Dichloro-2-nitrobenzene</span> Chemical compound

1,4-Dichloro-2-nitrobenzene is an organic compound with the formula C6H3Cl2NO2. One of several isomers of dichloronitrobenzene, it is a yellow solid that is insoluble in water. It is produced by nitration of 1,4-dichlorobenzene. It is a precursor to many derivatives of commercial interest. Hydrogenation gives 1,4-dichloroaniline. Nucleophiles displace the chloride adjacent to the nitro group: ammonia gives the aniline derivative, aqueous base gives the phenol derivative, and methoxide gives the anisole derivative. These compounds are respectively 4-chloro-2-nitroaniline, 4-chloro-2-nitrophenol, and 4-chloro-2-nitroanisole.

<span class="mw-page-title-main">Diethylbenzenes</span> Chemical compound

Diethylbenzene (DEB) refers to any of three isomers with the formula C6H4(C2H5)2. Each consists of a benzene ring and two ethyl substituents. The meta and para have the greater commercial significance. All are colorless liquids.

<span class="mw-page-title-main">1,2-Dibromobenzene</span> Chemical compound

1,2-Dibromobenzene (o-Dibromobenzene) is an organobromine compound with the formula C6H4Br2. It is one of three isomers, the others being 1,3- and 1,4-dibromobenzene. It is a colorless liquid, although impure samples appear yellowish. The compound is a precursor to many 1,2-disubstituted derivatives of benzene. For example, it is a precursor to 1,2-dicyanobenzene and dithioethers.

References

  1. "Nucleophilicity Trends of Amines". Master Organic Chemistry. 2018-05-07. Retrieved 2019-08-18.
  2. Karsten Eller; Erhard Henkes; Roland Rossbacher; Hartmut Höke (2005). "Amines, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_001. ISBN   3-527-30673-0.
  3. Lucet, D., Le Gall, T. and Mioskowski, C. (1998), The Chemistry of Vicinal Diamines. Angew. Chem. Int. Ed., 37: 2580–2627. doi : 10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L
  4. Robert A. Smiley "Phenylene- and Toluenediamines" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a19_405