Pyromellitic dianhydride

Last updated
Pyromellitic dianhydride
Pyromellitic dianhydride.svg
Names
Preferred IUPAC name
1H,3H-Benzo[1,2-c:4,5-c′]difuran-1,3,5,7-tetrone
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.001.726 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 201-898-9
PubChem CID
RTECS number
  • DB9300000
UNII
  • InChI=1S/C10H2O6/c11-7-3-1-4-6(10(14)16-8(4)12)2-5(3)9(13)15-7/h1-2H
    Key: ANSXAPJVJOKRDJ-UHFFFAOYSA-N
  • C1=C2C(=CC3=C1C(=O)OC3=O)C(=O)OC2=O
Properties
C10H2O6
Molar mass 218.120 g·mol−1
AppearanceWhite solid
Density 1.68 g/cm3
Melting point 283 to 286 °C (541 to 547 °F; 556 to 559 K)
Boiling point 397 to 400 °C (747 to 752 °F; 670 to 673 K)
Hygroscopic
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H317, H318, H334
P261, P272, P280, P285, P302+P352, P304+P341, P305+P351+P338, P310, P321, P333+P313, P342+P311, P363, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pyromellitic dianhydride (PMDA) is an organic compound with the formula C6H2(C2O3)2. It is the double carboxylic acid anhydride that is used in the preparation of polyimide polymers such as Kapton. It is a white, hygroscopic solid. It forms a hydrate.

Contents

Preparation

It is prepared by gas-phase oxidation of 1,2,4,5-tetramethylbenzene (or related tetrasubstituted benzene derivatives). An idealized equation is: [1]

C6H2(CH3)4 + 6 O2 → C6H2(C2O3)2 + 6 H2O

In the laboratory, it can be prepared by dehydration of pyromellitic acid using acetic anhydride. [2]

Reactions

Structure of the complex formed upon co-crystallization of pyromellitic anhydride (molecules terminated in red) and anthracene. ANTPML01.png
Structure of the complex formed upon co-crystallization of pyromellitic anhydride (molecules terminated in red) and anthracene.

PMDA is an electron-acceptor, forming a variety of charge-transfer complexes. It reacts with amines to diimides, C6H2[(CO)2NR]2 which also have acceptor properties. [4]

Applications

PMDA is used in PET bottle recycling as a chain extender. It increases the molecular weight of the polymer by linking-together alcohol and carboxylic acid groups formed by hydrolysis of the PET. This improves the rheological properties and overall quality of the recycled plastic. [5]

Safety

Evidence suggests that PMDA causes occupational asthma. [6]

Related Research Articles

<span class="mw-page-title-main">Amide</span> Organic compounds of the form RC(=O)NR′R″

In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid with the hydroxyl group replaced by an amine group ; or, equivalently, an acyl (alkanoyl) group joined to an amine group.

Chromic acid is an inorganic acid composed of the elements chromium, oxygen, and hydrogen. It is a dark, purplish red, odorless, sand-like solid powder. When dissolved in water, it is a strong acid. There are 2 types of chromic acid, they are: molecular chromic acid with the formula H
2
CrO
4
and dichromic acid with the formula H
2
Cr
2
O
7
.

<span class="mw-page-title-main">Phthalic anhydride</span> Chemical compound

Phthalic anhydride is the organic compound with the formula C6H4(CO)2O. It is the anhydride of phthalic acid. Phthalic anhydride is a principal commercial form of phthalic acid. It was the first anhydride of a dicarboxylic acid to be used commercially. This white solid is an important industrial chemical, especially for the large-scale production of plasticizers for plastics. In 2000, the worldwide production volume was estimated to be about 3 million tonnes per year.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Imide</span> Class of chemical compounds

In organic chemistry, an imide is a functional group consisting of two acyl groups bound to nitrogen. The compounds are structurally related to acid anhydrides, although imides are more resistant to hydrolysis. In terms of commercial applications, imides are best known as components of high-strength polymers, called polyimides. Inorganic imides are also known as solid state or gaseous compounds, and the imido group (=NH) can also act as a ligand.

<span class="mw-page-title-main">Polyimide</span> Class of polymers

Polyimide is a polymer containing imide groups belonging to the class of high-performance plastics. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, e.g. high temperature fuel cells, displays, and various military roles. A classic polyimide is Kapton, which is produced by condensation of pyromellitic dianhydride and 4,4'-oxydianiline.

<span class="mw-page-title-main">Acetic anhydride</span> Organic compound with formula (CH₃CO)₂O

Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.

<span class="mw-page-title-main">Organic acid anhydride</span> Any chemical compound having two acyl groups bonded to the same oxygen atom

An organic acid anhydride is an acid anhydride that is an organic compound. An acid anhydride is a compound that has two acyl groups bonded to the same oxygen atom. A common type of organic acid anhydride is a carboxylic anhydride, where the parent acid is a carboxylic acid, the formula of the anhydride being (RC(O))2O. Symmetrical acid anhydrides of this type are named by replacing the word acid in the name of the parent carboxylic acid by the word anhydride. Thus, (CH3CO)2O is called acetic anhydride.Mixed (or unsymmetrical) acid anhydrides, such as acetic formic anhydride (see below), are known, whereby reaction occurs between two different carboxylic acids. Nomenclature of unsymmetrical acid anhydrides list the names of both of the reacted carboxylic acids before the word "anhydride" (for example, the dehydration reaction between benzoic acid and propanoic acid would yield "benzoic propanoic anhydride").

<span class="mw-page-title-main">Maleic anhydride</span> Chemical compound

Maleic anhydride is an organic compound with the formula C2H2(CO)2O. It is the acid anhydride of maleic acid. It is a colorless or white solid with an acrid odor. It is produced industrially on a large scale for applications in coatings and polymers.

<span class="mw-page-title-main">Mellitic acid</span> Chemical compound

Mellitic acid, also called graphitic acid or benzenehexacarboxylic acid, is an acid first discovered in 1799 by Martin Heinrich Klaproth in the mineral mellite (honeystone), which is the aluminium salt of the acid. It crystallizes in fine silky needles and is soluble in water and alcohol.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Pivalic acid, also known as neovaleric acid, is a carboxylic acid with a molecular formula of (CH3)3CCO2H. This colourless, odiferous organic compound is solid at room temperature. A common abbreviation for the pivalyl or pivaloyl group (t-BuC(O)) is Piv and for pivalic acid (t-BuC(O)OH) is PivOH. It is an isomer of valeric acid, the other two isomers of it are 2-Methylbutanoic acid and 3-Methylbutanoic acid.

<span class="mw-page-title-main">Durene</span> Chemical compound

Durene, or 1,2,4,5-tetramethylbenzene, is an organic compound with the formula C6H2(CH3)4. It is a colourless solid with a sweet odor. The compound is classified as an alkylbenzene. It is one of three isomers of tetramethylbenzene, the other two being prehnitene (1,2,3,4-tetramethylbenzene) and isodurene (1,2,3,5-tetramethylbenzene). Durene has an unusually high melting point (79.2 °C), reflecting its high molecular symmetry.

<span class="mw-page-title-main">Ethenone</span> Organic compound with the formula H2C=C=O

In organic chemistry, ethenone is the formal name for ketene, an organic compound with formula C2H2O or H2C=C=O. It is the simplest member of the ketene class. It is an important reagent for acetylations.

<span class="mw-page-title-main">4,4'-Oxydianiline</span> Chemical compound

4,4′-Oxydianiline (ODA) is an organic compound with the formula O(C6H4NH2)2. It is an ether derivative of aniline. This colourless solid is a useful monomer and cross-linking agent for polymers, especially the polyimides, such as Kapton.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

<span class="mw-page-title-main">Ethylenetetracarboxylic dianhydride</span> Chemical compound

Ethylenetetracarboxylic dianhydride is a chemical compound with formula C
6
O
6
, that can be seen as the twofold anhydride of ethylenetetracarboxylic acid C
6
H
4
O
8
. It has a bicyclic molecular structure consisting of two maleic anhydride rings fused by their respective alkene units. It is a pale yellow oily liquid, soluble in dichloromethane and chloroform.

<span class="mw-page-title-main">4,4′-(Hexafluoroisopropylidene)diphthalic anhydride</span> Chemical compound

4,4′-(Hexafluoroisopropylidene)diphthalic anhydride (6FDA) is an aromatic organofluorine compound and the dianhydride of 4,4′-(hexafluoroisopropylidene)bisphthalic acid.

<span class="mw-page-title-main">Transition metal carboxylate complex</span> Class of chemical compounds

Transition metal carboxylate complexes are coordination complexes with carboxylate (RCO2) ligands. Reflecting the diversity of carboxylic acids, the inventory of metal carboxylates is large. Many are useful commercially, and many have attracted intense scholarly scrutiny. Carboxylates exhibit a variety of coordination modes, most common are κ1- (O-monodentate), κ2 (O,O-bidentate), and bridging.

References

  1. F. Röhrscheid (2012). "Carboxylic Acids, Aromatic". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_249.
  2. E. Philippi; R. Thelen (1930). "Pyromellitic Acid". Organic Syntheses. 10: 90. doi:10.15227/orgsyn.010.0090.
  3. Robertson, B. E.; Stezowski, J. J. (1978). "The crystal structure of the π-molecular complex of anthracene with pyromellitic dianhydride at –120°C". Acta Crystallographica Section B. 34 (10): 3005–3011. doi:10.1107/S0567740878009929.
  4. Song, Zhiping; Zhan, Hui; Zhou, Yunhong (2010). "Polyimides: Promising Energy-Storage Materials". Angewandte Chemie International Edition. 49 (45): 8444–8448. doi:10.1002/anie.201002439. PMID   20862664.
  5. Incarnato, L; Scarfato, P; Di Maio, L; Acierno, D (August 2000). "Structure and rheology of recycled PET modified by reactive extrusion". Polymer. 41 (18): 6825–6831. doi:10.1016/S0032-3861(00)00032-X.
  6. Madsen, Milene Torp; Skadhauge, Lars Rauff; Nielsen, Anders Daldorph; Baelum, Jesper; Sherson, David Lee (2019). "Pyromellitic dianhydride (PMDA) may cause occupational asthma". Occupational and Environmental Medicine. 76 (3): 175–177. doi:10.1136/oemed-2018-105295. PMC   6581108 . PMID   30635433.