Thermogalvanic cell

Last updated
Thermogalvanic cell displaying the elements making up the cell Thermogalvanic cell General.png
Thermogalvanic cell displaying the elements making up the cell

In electrochemistry, a thermogalvanic cell is a kind of galvanic cell in which heat is employed to provide electrical power directly. [1] [2] These cells are electrochemical cells in which the two electrodes are deliberately maintained at different temperatures. This temperature difference generates a potential difference between the electrodes. [3] [4] The electrodes can be of identical composition and the electrolyte solution homogeneous. This is usually the case in these cells. [5] This is in contrast to galvanic cells in which electrodes and/or solutions of different composition provide the electromotive potential. As long as there is a difference in temperature between the electrodes a current will flow through the circuit. A thermogalvanic cell can be seen as analogous to a concentration cell but instead of running on differences in the concentration/pressure of the reactants they make use of differences in the "concentrations" of thermal energy. [6] [7] [8] The principal application of thermogalvanic cells is the production of electricity from low-temperature heat sources (waste heat and solar heat). Their energetic efficiency is low, in the range of 0.1% to 1% for conversion of heat into electricity. [7]

Contents

History

The use of heat to empower galvanic cells was first studied around 1880. [9] However it was not until the decade of 1950 that more serious research was undertaken in this field. [3]

Working mechanism

Thermogalvanic cells are a kind of heat engine. Ultimately the driving force behind them is the transport of entropy from the high temperature source to the low temperature sink. [10] Therefore, these cells work thanks to a thermal gradient established between different parts of the cell. Because the rate and enthalpy of chemical reactions depend directly on the temperature, different temperatures at the electrodes imply different chemical equilibrium constants. This translates into unequal chemical equilibrium conditions on the hot side and on the cold side. The thermocell tries to approach an homogeneous equilibrium and, in doing so, produces a flow of chemical species and electrons. The electrons flow through the path of least resistance (the outer circuit) making it possible to extract power from the cell.

Types

Different thermogalvanic cells have been constructed attending to their uses and properties. Usually they are classified according to the electrolyte employed in each specific type of cell.

Aqueous electrolytes

In these cells the electrolyte between the electrodes is a water solution of some salt or hydrophylic compound. [5] An essential property of these compounds is that they must be able to undergo redox reactions in order to shuttle electrons from one electrode to the other during the cell operation.

Non-aqueous electrolytes

The electrolyte is a solution of some other solvent different from water. [5] Solvents like methanol, acetone, dimethyl sulphoxide and dimethyl formamide have been successfully employed in thermogalvanic cells running on copper sulfate. [11]

Molten salts

In this type of thermocell the electrolyte is some kind of salt with a relatively low melting point. Their use solves two problems. On one hand the temperature range of the cell is much larger. This is an advantage as these cells produce more power the larger the difference between the hot and cold sides. On the other hand, the liquid salt directly provides the anions and cations necessary for sustainment of a current through the cell. Therefore, no additional current-carrying compounds are necessary as the melted salt is the electrolyte itself. [12] Typical hot source temperatures are between 600–900 K, but can get as high as 1730 K. Cold sink temperatures are in the 400–500 K range.

Solid electrolytes

Thermocells in which the electrolyte connecting the electrodes is an ionic material have been considered and constructed too. [5] The temperature range is also elevated as compared to liquid electrolytes. Studied systems fall in the 400–900 K. Some solid ionic materials that have been employed to construct thermogalvanic cells are AgI, PbCl2 and PbBr2.

Uses

Given the advantages provided by the working mechanism of thermogalvanic cells, their main application is electricity production under conditions where there is an excess of heat available. In particular thermogalvanic cells are being used to produce electricity in the following areas.

Solar energy

The heat collected from this process generates steam, which can be used in a conventional steam turbine system to make electricity. In contrast to the low-temperature solar thermal systems that are used for air or water heating in domestic or commercial buildings, these solar thermal electricity plants operate at high temperatures, requiring both concentrated sunlight and a large collection area, making the Moroccan desert an ideal location.

This is an alternative approach to the more widely used “photovoltaic” technology for producing electricity from sunlight. In a photovoltaic system, the sunlight is absorbed in the photovoltaic device (commonly called a solar cell) and energy is passed to electrons in the material, converting the solar energy directly into electricity. Sometimes, solar thermal electricity and photovoltaics are portrayed as competing technologies and, while this may be true when deciding on the way forward for a specific site, in general they are complementary, using solar energy as extensively as possible.

Thermal generators

Waste heat sources

Thermogalvanic cells can be used to extract a useful quantity of energy from waste heat sources even when the temperature gradient is less than 100C (sometimes only a few tens of degrees). This is often the case in many industrial areas. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Cathode</span> An electrode where reduction take place

A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit. For example, the end of a household battery marked with a + (plus) is the cathode.

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an outcome of a particular chemical change, or vice versa. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Electrochemical cell</span> Electro-chemical device

An electrochemical cell is a device capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions. The electrochemical cells which generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells. A common example of a galvanic cell is a standard 1.5 volt cell meant for consumer use. A battery consists of one or more cells, connected in parallel, series or series-and-parallel pattern.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".

In electrochemistry, electrode potential is the electromotive force of a galvanic cell built from a standard reference electrode and another electrode to be characterized. By convention, the reference electrode is the standard hydrogen electrode (SHE). It is defined to have a potential of zero volts. It may also be defined as the potential difference between the charged metallic rods and salt solution.

<span class="mw-page-title-main">Electromotive force</span> Electrical action produced by a non-electrical source

In electromagnetism and electronics, electromotive force is the electrical action produced by a non-electrical source, measured in volts. Devices called electrical transducers provide an emf by converting other forms of energy into electrical energy, such as batteries or generators. This energy conversion is achieved by physical forces applying physical work on electric charges. However, the term "electromotive force" is not actually a force. Volta's mistake of labeling it a "force" is a misnomer that persists as a historical relic.

<span class="mw-page-title-main">Galvanic cell</span> Electrochemical device

A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous Oxidation-Reduction reactions. A common apparatus generally consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a salt bridge or separated by a porous membrane.

<span class="mw-page-title-main">Electrolytic cell</span> Cell that uses electrical energy to drive a non-spontaneous redox reaction

An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to drive a chemical reaction that would not otherwise occur. This is in contrast to a galvanic cell, which itself is a source of electrical energy and the foundation of a battery. The net reaction taking place in a galvanic cell is a spontaneous reaction, i.e, the Gibbs free energy remains negative, while the net reaction taking place in an electrolytic cell is the reverse of this spontaneous reaction, i.e, the Gibbs free energy is positive.

In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound. The IUPAC "Gold Book" defines it as: "the value of the standard emf of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".

An atomic battery, nuclear battery, radioisotope battery or radioisotope generator is a device which uses energy from the decay of a radioactive isotope to generate electricity. Like nuclear reactors, they generate electricity from nuclear energy, but differ in that they do not use a chain reaction. Although commonly called batteries, they are technically not electrochemical and cannot be charged or recharged. They are very costly, but have an extremely long life and high energy density, and so they are typically used as power sources for equipment that must operate unattended for long periods of time, such as spacecraft, pacemakers, underwater systems and automated scientific stations in remote parts of the world.

<span class="mw-page-title-main">Dye-sensitized solar cell</span> Type of thin-film solar cell

A dye-sensitized solar cell is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991. Michael Grätzel has been awarded the 2010 Millennium Technology Prize for this invention.

The photovoltaic effect is the generation of voltage and electric current in a material upon exposure to light. It is a physical and chemical phenomenon.

<span class="mw-page-title-main">Electrolysis of water</span> Electricity-induced chemical reaction

Electrolysis of water, also known as electrochemical water splitting, is the process of using electricity to decompose water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, or remixed with the oxygen to create oxyhydrogen gas, which is used in welding and other applications.

In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly related to a cell's voltage efficiency. In an electrolytic cell the existence of overpotential implies that the cell requires more energy than thermodynamically expected to drive a reaction. In a galvanic cell the existence of overpotential means less energy is recovered than thermodynamics predicts. In each case the extra/missing energy is lost as heat. The quantity of overpotential is specific to each cell design and varies across cells and operational conditions, even for the same reaction. Overpotential is experimentally determined by measuring the potential at which a given current density is achieved.

The alkali-metal thermal-to-electric converter (AMTEC), originally called the sodium heat engine (SHE) was invented by Joseph T. Kummer and Neill Weber at Ford in 1966, and is described in US Patents 3404036, 3458356, 3535163 and 4049877. It is a thermally regenerative electrochemical device for the direct conversion of heat to electrical energy. It is characterized by high potential efficiencies and no moving parts except for the working fluid, which make it a candidate for space power applications.

In battery technology, a concentration cell is a limited form of a galvanic cell that has two equivalent half-cells of the same composition differing only in concentrations. One can calculate the potential developed by such a cell using the Nernst equation. A concentration cell produces a small voltage as it attempts to reach chemical equilibrium, which occurs when the concentration of reactant in both half-cells are equal. Because an order of magnitude concentration difference produces less than 60 millivolts at room temperature, concentration cells are not typically used for energy storage.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

A Johnson thermoelectric energy converter or JTEC is a type of solid-state heat engine that uses the electrochemical oxidation and reduction of hydrogen in a two-cell, thermal cycle that approximates the Ericsson cycle. It is under investigation as a viable alternative to conventional thermoelectric conversion. Lonnie Johnson invented it and claims the converter exhibits an energy conversion efficiency of as much as 60%, however, this claim is at a theoretical level based on comparison with a Carnot cycle and assumes a temperature gradient of 600 °C. It was originally proposed for funding to the Office of Naval Research but was refused. Johnson obtained later funding by framing the engine as a hydrogen fuel cell. Johnson had been collaborating with PARC on development of the engine.

Photoelectrochemistry is a subfield of study within physical chemistry concerned with the interaction of light with electrochemical systems. It is an active domain of investigation. One of the pioneers of this field of electrochemistry was the German electrochemist Heinz Gerischer. The interest in this domain is high in the context of development of renewable energy conversion and storage technology.

A thermoelectric battery stores energy when charged by converting heat into chemical energy and produces electricity when discharged. Such systems potentially offer an alternative means of disposing of waste heat from plants that burn fossil fuels and/or nuclear energy.

References

  1. Chum, HL; Osteryoung, RA (1980). “Review of thermally regenerative electrochemical systems. Volume 1: Synopsis and executive summary”. Solar Energy Research Institute pp. 35–40.
  2. Quickenden, TI; Vernon, CF (1986). “Thermogalvanic conversion of heat to electricity”. Solar Energy 36 (1): 63–72.
  3. 1 2 Agar, JN (1963). “Thermogalvanic cells”. Advances in electrochemistry and electrochemical engineering (Ed. Delahay, P, and Tobias, CW) Interscience, New York; vol. 3 pp. 31–121.
  4. Zito Jr, R (1963). “Thermogalvanic energy conversion”. AIAA J 1 (9): 2133–8.
  5. 1 2 3 4 Chum, HL; Osteryoung, RA (1981). “Review of thermally regenerative electrochemical systems. Volume 2”. Solar Energy Research Institute pp. 115–148.
  6. Tester, JW (1992). “Evaluation of thermogalvanic cells for the conversion of heat to electricity”. Report to Crucible Ventures. Department of Chemical Engineering and Energy Laboratory, Massachusetts Institute of Technologogy, Cambridge, Massachusetts. MIT-EL 92-007.
  7. 1 2 Quickenden, TI; Mua, Y (1995). “A review of power generation in aqueous thermogalvanic cells”. J Electrochem Soc 142 (11): 3985–94.
  8. Gunawan, A; Lin, CH; Buttry, DA; Mujica, V; Taylor, RA; Prasher, RS; Phelan, PE (2013). “Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments”. Nanoscale Microscale Thermophys Eng 17: 304–23. doi: 10.1080/15567265.2013.776149
  9. Bouty, E (1880). “Phénomènes Thermo-électriques et Électro-thermiques au Contact d’un Métal et d’un Liquid [Thermo-electric and electro-thermal phenomena at the contact between a metal and a liquid]. J Phys 9: 229–241.
  10. deBethune, AJ; Licht, TS; Swendeman, N (1959). “The temperature coefficients of electrode potentials”. J Electrochem Soc 106 (7): 616–25.
  11. Clampitt et al.,(1966). “Electrochemical cell for conversion of heat energy”. USA patent 3,253,955.
  12. Kuzminskii, YV; Zasukha, VA; Kuzminskaya, GY (1994). “Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cells”. J Power Sources 52: 231–42.
  13. Dario Borghino. "MIT finds new way to harvest energy from heat".