Lithic analysis

Last updated

In archaeology, lithic analysis is the analysis of stone tools and other chipped stone artifacts using basic scientific techniques. At its most basic level, lithic analyses involve an analysis of the artifact's morphology, the measurement of various physical attributes, and examining other visible features (such as noting the presence or absence of cortex, for example).

Contents

The term 'lithic analysis' can technically refer to the study of any anthropogenic (human-created) stone, but in its usual sense it is applied to archaeological material that was produced through lithic reduction (knapping) or ground stone. A thorough understanding of the lithic reduction and ground stone processes, in combination with the use of statistics, can allow the analyst to draw conclusions concerning the type of lithic manufacturing techniques used at a prehistoric archaeological site. For example, they can make certain equation between each the factors of flake to predict original shape. [1] These data can then be used to draw an understanding of socioeconomic and cultural organization.

The term knapped is synonymous with "chipped" or "struck", but is preferred by some analysts because it signifies intentionality and process. Ground stone generally refers to any tool made by a combination of flaking, pecking, pounding, grinding, drilling, and incising, and includes things such as mortars  /  metates, pestles (or manos), grinding slabs, hammerstones, grooved and perforated stones, axes, etc., which appear in all human cultures in some form. Among the tool types analyzed are projectile points, bifaces, unifaces, ground stone artifacts, and lithic reduction by-products (debitage) such as flakes and cores.

Materials

Stone is the one category of material which is used by (virtually) all human cultures and, for the vast majority of the human past, is the only record of human behaviour. The end of prehistory does not signify the end of stone working; stones were knapped in Medieval Europe, well into the 19th century in many parts of Europe and the Americas. Contemporary stone tool manufacturers often work stone for experimentation with past techniques or for replication.

Flint and chert are the most commonly knapped materials and are compact cryptocrystalline quartz. The difference between the two terms is colloquial, and flint can be seen as a variety of chert. In common usage, flint may refer more often to high quality material from chalky matrix (i.e. "chalk flint" as found in Britain) and chert refers to material from limestone matrices. [2] To avoid this, the term "silicate" may be used to describe the family of cryptocrystalline quartzes that are suitable for knapping. As well as cryptocrystalline quartz, macrocrystalline quartz (both vein quartz and rock crystal) was a commonly used raw material around the globe. [3]

In North America, Central America, and other places around the world, such as Turkey and New Zealand, obsidian, or volcanic glass, was also a highly sought-after material for knapping and was widely traded. This is due to the quality of the stone, the razor sharpness of edges that can be created, and the fact that it fractures in highly predictable ways.

Soapstone, or steatite, has been a popular rock for grinding and carving among many cultures worldwide. It has been used for production of such disparate items as vessels/bowls, pipes, cooking slabs, and sculptures.

Areas of study

Conventional approaches to the analysis of knapped stone can be grouped into three elementary, yet ultimately interconnected, areas of study: typological analysis, functional analysis, and technological analysis. Additional areas of study, such as geochemical analysis, have been developed in recent decades.

Typological classification

In reference to lithic analyses, typological classification is the act of artifact classification based on morphological similarities. Resultant classes include those artifacts subsumed by tool, production, and debitage categories.

The best known lithic typology is the series established by François Bordes (1950) for the Lower and Middle Palaeolithic of France, where sixty three types of stone tools were defined on the basis of manufacturing techniques and morphological characteristics. According to Bordes, the presence or absence of tool types, or differences in the frequency of types between assemblages, were manifestations of cultural differences between ethnic groups. Notwithstanding that there have been several re-evaluations of Bordes’ interpretation of the "ethnicity" of variations in assemblage type composition, the basic assumption that there is explanatory value in the construction of morphologically defined types of artifacts has remained. For instance, the use of typologies as indicators of chronological and/or cultural affiliations is rarely disputed and is acknowledged as an invaluable analytical tool for this purpose.

Function

Functional analysis of stone tools – a term given to a variety of approaches designed with the aim of identifying the use of a stone tool – is based on the argument that the uses to which tools were put in antiquity leave diagnostic damage and/or polish on their working edges. This type of analysis is also known as use-wear analysis

Experiments have been conducted in order to match up the microwear patterns on actual artifacts with experimental artifacts. At the site of Nausharo, the use-wear analysis conducted on the flint artifacts showed a match to the experimental use-wear of a potter using the flint blades as trimming tools for pottery placed on a potter's wheel. This is significant because it gives direct evidence for the use of the blades and for the presence of a potter's wheel. [4]

Although there are debates concerning the physics of both edge polishes and edge damage which draw on the science of tribology, modern microwear analysis usually depends on the comparisons of the edge wear of modern experimentally produced samples with archaeological and/or ethnographic tools. The ability of a microwear analyst has been tested in the past by presenting them with a set of experimentally produced and utilised tool in a blind experiment. The overall purpose is to provide an accurate, and precise, analytical instrument for the identification of stone tool function. It is worth noting that the precision of functional identifications may range considerably, from "scraping soft material" to "scraping fresh hide for 10 minutes" with a corresponding drop in accuracy as precision increases. Macrowear studies relying on 3D modelling are also increasingly common. [5]

Ethnographic research is another way to figure out the use of stone tools by observing the modern communities which still have stone tool traditions. A research of the Wola society in Papua New Guinea shows that stone tools have a wide range of uses, but a short lifespan. They use stone tools to make weapons, utensils, clothing, and musical instruments. However, the lithic materials might be less important than wooden tools in their material culture when considering other resources in the Wola. It shows that studying both people and environment as a whole can provide a better understanding of the function and role of stone tools. [6]

Technology

Technological analysis is concerned with the examination of the production of knapped-stone artifacts. The study of the attributes of waste products (debitage) and tools are the most important methods for the study of knapped-stone technology, backed up with experimental production. [7] One such method of experimentation is to use steel balls dropped by an electromagnet onto a glass prism to test relationships such as platform thickness and flake length. [8] Additionally, work by Patterson(1990) indicates that the process of bifacial reduction can be identified through analysis of debitage in the absence of an identifiable bifacial artefact by comparing the various proportions of an assemblage's flake sizes. [9] A very wide range of attributes may be used to characterize and compare assemblages to isolate (and interpret) differences across time and space in the production of stone tools. Lithic analysts identify flake scarring on stone artifacts in order to understand the manufacturing process of flake production. [10] There have been efforts to identify variables to predict original size of discarded tool artifact but the results yielded from these studies have not been uniform and research continues. [11] Kuhn (1990) [12] presents his Geometric Index of Unifacial Reduction, an equation for estimating the mass loss of retouched stone artefacts. This index attempts to use 2D measurements of a flakes reduced edge to find the lost mass. Discovering the amount a particular flake has been reduced can help archaeologists answer questions of tool maintainability, optimal resources, and knapping practices. [13] Kuhn's GIUR method was recently reestablished as a robust method as evident through simulation and experiments yielding strong positive correlation coefficients of flake mass removed from retouched flakes. [14] The GIUR method is best used on flakes that have been lightly retouched and it can only be used on flakes that are unifacial. [15] 3D modelling is an increasingly important tool for lithic analysis. [16] [5]

Above all, whether the typological classification, function or technology, there is a premise in these analytic method. The premise is that archaeologists presume a blueprint of the end-product of stone tool, or say a mental map with step-by-step processes of prehistoric people in mind. This assumption contain the concept that people tend to shape stone tool into certain specific form for specific purpose. This is the foundation of lithic typology and widely accepted. However Hiscock (2004) [17] provides an ethnographic observation from Australia and points out that the processes of making lithic flake are actually more social dynamic and with much negotiation between lithic knappers, the common measure attributes, such as retouched scar, form of flake and optimal economic presumption, are all less related to the function of the end-product. Although there are several other ethnographic studies lead to similar conclusion, Hiscock reminds that these observations are not to overthrow the classification system now but to provide an alternative possibility to consider lithic study. Shott proposed that the settlement mobility and lithic technology are related based on ethnographic and archaeological studies. The technological diversity decreases when the mobility frequency and magnitude become greater, which is consistent with theoretically derived expectations from 14 ethnographic groups. [18] Though diversity decreases, however, the range in the tool's flexibility in function greatly increases. As a result, the tool limit a group can carry can be determined by their mobility. Foragers need only two to three different tool classes in order to survive. [18]

Petrological and geochemical analysis

Petrological and geochemical analysis can be useful in identifying the sources of lithics and assist in establishing trade and migration routes. [19] Methods used are typical of those used in geologic research, such as petrographic thin section analysis, neutron activation analysis, stable isotope analysis, and X-ray fluorescence. One example of this application is Yellin (1996) in which neutron activation analysis was used to trace the source of obsidian artifacts found at the Gilat site in Israel. [20] This investigation found that earlier obsidian was obtained from central Anatolia, but in later times, obsidian was obtained from another region in eastern Anatolia. This is used as evidence for changing trade relationships in Israel during the Chalcolithic period.

Reduction

Lithic reduction itself can be studied to help illuminate the settlement and movement patterns of hunter-gatherer groups by following the idea of Central Place Foraging Models. The Model dictates that the farther from a resource a group inhabits, the more processing of that resource will occur in the field before being transported to the primary habitation. Testing of this model has indicated it is indeed applicable to lithic assemblages, and can help to identify assemblages created by highly mobile hunter-gatherer societies in prehistory. [21]

Related Research Articles

<span class="mw-page-title-main">Lithic reduction</span> Process of fashioning stones or rocks into tools and weapons

In archaeology, in particular of the Stone Age, lithic reduction is the process of fashioning stones or rocks from their natural state into tools or weapons by removing some parts. It has been intensely studied and many archaeological industries are identified almost entirely by the lithic analysis of the precise style of their tools and the chaîne opératoire of the reduction techniques they used.

<span class="mw-page-title-main">Lithic core</span> In archaeology, a stone artifact left over from toolmaking

In archaeology, a lithic core is a distinctive artifact that results from the practice of lithic reduction. In this sense, a core is the scarred nucleus resulting from the detachment of one or more flakes from a lump of source material or tool stone, usually by using a hard hammer precursor such as a hammerstone. The core is marked with the positive scars of these flakes. The surface area of the core which received the blows necessary for detaching the flakes is referred to as the striking platform. The core may be discarded or shaped further into a core tool, such as can be seen in some types of handaxe.

In archaeology, a tool stone is a type of stone that is used to manufacture stone tools, or tools that use stone as raw material.

In archaeology, a prismatic blade is a long, narrow, specialized stone flake tool with a sharp edge, like a small razor blade. Prismatic blades are flaked from stone cores through pressure flaking or direct percussion. This process results in a very standardized finished tool and waste assemblage. The most famous and most prevalent prismatic blade material is obsidian, as obsidian use was widespread in Mesoamerica, though chert, flint, and chalcedony blades are not uncommon. The term is generally restricted to Mesoamerican archaeology, although some examples are found in the Old World, for example in a Minoan grave in Crete.

Stone tools have been used throughout human history but are most closely associated with prehistoric cultures and in particular those of the Stone Age. Stone tools may be made of either ground stone or knapped stone, the latter fashioned by a craftsman called a flintknapper. Stone has been used to make a wide variety of tools throughout history, including arrowheads, spearheads, hand axes, and querns. Knapped stone tools are nearly ubiquitous in pre-metal-using societies because they are easily manufactured, the tool stone raw material is usually plentiful, and they are easy to transport and sharpen.

<span class="mw-page-title-main">Knapping</span> Shaping of conchoidal fracturing stone to manufacture stone tools

Knapping is the shaping of flint, chert, obsidian, or other conchoidal fracturing stone through the process of lithic reduction to manufacture stone tools, strikers for flintlock firearms, or to produce flat-faced stones for building or facing walls, and flushwork decoration. The original Germanic term knopp meant to strike, shape, or work, so it could theoretically have referred equally well to making statues or dice. Modern usage is more specific, referring almost exclusively to the hand-tool pressure-flaking process pictured. It is distinguished from the more general verb "chip" and is different from "carve", and "cleave".

<span class="mw-page-title-main">Experimental archaeology</span> Archaeological sub-discipline

Experimental archaeology is a field of study which attempts to generate and test archaeological hypotheses, usually by replicating or approximating the feasibility of ancient cultures performing various tasks or feats. It employs a number of methods, techniques, analyses, and approaches, based upon archaeological source material such as ancient structures or artifacts.

<span class="mw-page-title-main">Obsidian use in Mesoamerica</span> Aspect of Mesoamerican material culture

Obsidian is a naturally formed volcanic glass that was an important part of the material culture of Pre-Columbian Mesoamerica. Obsidian was a highly integrated part of daily and ritual life, and its widespread and varied use may be a significant contributor to Mesoamerica's lack of metallurgy. Lithic and contextual analysis of obsidian, including source studies, are important components of archaeological studies of past Mesoamerican cultures and inform scholars on economy, technological organization, long-distance trade, ritual organization, and socio-cultural structure.

<span class="mw-page-title-main">Denticulate tool</span> Type of stone tool

In archaeology, a denticulate tool is a stone tool containing one or more edges that are worked into multiple notched shapes, much like the toothed edge of a saw. Such tools have been used as saws for woodworking, processing meat and hides, craft activities and for agricultural purposes. Denticulate tools were used by many different groups worldwide and have been found at a number of notable archaeological sites. They can be made from a number of different lithic materials, but a large number of denticulate tools are made from flint.

<span class="mw-page-title-main">Blade (archaeology)</span> Type of stone tool

In archaeology, a blade is a type of stone tool created by striking a long narrow flake from a stone core. This process of reducing the stone and producing the blades is called lithic reduction. Archaeologists use this process of flintknapping to analyze blades and observe their technological uses for historical purposes.

<span class="mw-page-title-main">Levallois technique</span> Distinctive type of stone knapping technique used by ancient humans

The Levallois technique is a name given by archaeologists to a distinctive type of stone knapping developed around 250,000 to 300,000 years ago during the Middle Palaeolithic period. It is part of the Mousterian stone tool industry, and was used by the Neanderthals in Europe and by modern humans in other regions such as the Levant.

Retouch is the act of producing scars on a stone flake after the ventral surface has been created. It can be done to the edge of an implement in order to make it into a functional tool, or to reshape a used tool. Retouch can be a strategy to reuse an existing lithic artifact and enable people to transform one tool into another tool. Depending on the form of classification that one uses, it may be argued that retouch can also be conducted on a core-tool, if such a category exists, such as a hand-axe.

In archaeology, lithic technology includes a broad array of techniques used to produce usable tools from various types of stone. The earliest stone tools to date have been found at the site of Lomekwi 3 (LOM3) in Kenya and they have been dated to around 3.3 million years ago. The archaeological record of lithic technology is divided into three major time periods: the Paleolithic, Mesolithic, and Neolithic. Not all cultures in all parts of the world exhibit the same pattern of lithic technological development, and stone tool technology continues to be used to this day, but these three time periods represent the span of the archaeological record when lithic technology was paramount. By analysing modern stone tool usage within an ethnoarchaeological context, insight into the breadth of factors influencing lithic technologies in general may be studied. See: Stone tool. For example, for the Gamo of Southern Ethiopia, political, environmental, and social factors influence the patterns of technology variation in different subgroups of the Gamo culture; through understanding the relationship between these different factors in a modern context, archaeologists can better understand the ways that these factors could have shaped the technological variation that is present in the archaeological record.

<span class="mw-page-title-main">Use-wear analysis</span> Analysis of traces of use in archeology

Use-wear analysis is a method in archaeology to identify the functions of artifact tools by closely examining their working surfaces and edges. It is mainly used on stone tools, and is sometimes referred to as "traceological analysis".

<span class="mw-page-title-main">Flake tool</span> Type of stone tool

In archaeology, a flake tool is a type of stone tool that was used during the Stone Age that was created by striking a flake from a prepared stone core. People during prehistoric times often preferred these flake tools as compared to other tools because these tools were often easily made, could be made to be extremely sharp & could easily be repaired. Flake tools could be sharpened by retouch to create scrapers or burins. These tools were either made by flaking off small particles of flint or by breaking off a large piece and using that as a tool itself. These tools were able to be made by this "chipping" away effect due to the natural characteristic of stone. Stone is able to break apart when struck near the edge. Flake tools are created through flint knapping, a process of producing stone tools using lithic reduction.

<span class="mw-page-title-main">Debitage</span> Archeological term; material produced during the process of lithic reduction

In archaeology, debitage is all the material produced during the process of lithic reduction – the production of stone tools and weapons by knapping stone. This assemblage may include the different kinds of lithic flakes and lithic blades, but most often refers to the shatter and production debris, and production rejects.

Peter Dixon Hiscock is an Australian archaeologist. Born in Melbourne, he obtained a PhD from the University of Queensland. Between 2013 and 2021, he was the inaugural Tom Austen Brown Professor of Australian Archaeology at the University of Sydney, having previously held a position in the School of Archaeology and Anthropology at the Australian National University.

Mumba Cave, located near the highly alkaline Lake Eyasi in Karatu District, Arusha Region, Tanzania. The cave is a rich archaeological site noted for deposits spanning the transition between the Middle Stone Age and Late Stone Age in Eastern Africa. The transitional nature of the site has been attributed to the large presence of its large assemblage of ostrich eggshell beads and more importantly, the abundance of microlith technology. Because these type artifacts were found within the site it has led archaeologists to believe that the site could provide insight into the origins of modern human behavior. The cave was originally tested by Ludwig Kohl-Larsen and his wife Margit in their 1934 to 1936 expedition. They found abundant artifacts, rock art, and burials. However, only brief descriptions of these findings were ever published. That being said, work of the Kohl-Larsens has been seen as very accomplished due to their attention to detail, especially when one considers that neither was versed in proper archaeological techniques at the time of excavation. The site has since been reexamined in an effort to reanalyze and complement the work that has already been done, but the ramifications of improper excavations of the past are still being felt today, specifically in the unreliable collection of C-14 data and confusing stratigraphy.

<span class="mw-page-title-main">Buttermilk Creek complex</span> Early archaeological site in Texas, United States

The Buttermilk Creek complex is the remains of a paleolithic settlement along the shores of Buttermilk Creek in present-day Salado, Texas. The assemblage dates to ~13.2 to 15.5 thousand years old. If confirmed, the site represents evidence of human settlement in the Americas that pre-dates the Clovis culture.

<span class="mw-page-title-main">Chaîne opératoire</span> Term in anthropology

Chaîne opératoire is a term used throughout anthropological discourse, but is most commonly used in archaeology and sociocultural anthropology. It functions as a methodological tool for analysing the technical processes and social acts involved in the step-by-step production, use, and eventual disposal of artifacts, such as lithic reduction or pottery. This concept of technology as the science of human activities was first proposed by French archaeologist, André Leroi-Gourhan, and later by the historian of science André-Georges Haudricourt. Both were students of Marcel Mauss who had earlier recognised that societies could be understood through its techniques by virtue of the fact that operational sequences are steps organised according to an internal logic specific to a society.

References

  1. Pelcin, Andrew W. (1998). "The Threshold Effect of Platform Width: A Reply to Davis and Shea". Journal of Archaeological Science. 25 (7): 615–620. Bibcode:1998JArSc..25..615P. doi:10.1006/jasc.1997.0253.
  2. Luedtke, B.E. 1992. "An archaeologist's guide to chert and flint". Archaeological Research Tools 7. Institute of Archaeology. University of California, Los Angeles. ISBN   0-917956-75-3
  3. Driscoll, Killian. 2010. "Understanding quartz technology in early prehistoric Ireland"
  4. Méry, S.; Anderson, P.; Inizan, M. L.; Lechevallier, M.; Pelegrin, J. (2007). "A pottery workshop with flint tools on blades knapped with copper at Nausharo (Indus civilisation, ca. 2500 BC)". Journal of Archaeological Science. 34 (7): 1098–1116. Bibcode:2007JArSc..34.1098M. doi:10.1016/j.jas.2006.10.002.
  5. 1 2 Wyatt-Spratt, Simon (2022-11-04). "After the Revolution: A Review of 3D Modelling as a Tool for Stone Artefact Analysis". Journal of Computer Applications in Archaeology. 5 (1): 215–237. doi: 10.5334/jcaa.103 . hdl: 2123/30230 . ISSN   2514-8362.
  6. Sillitoe, P. and K. Hardy 2003 "Living lithics: ethnoarchaeology in highland Papua New Guinea". Antiquity 77:555-566.
  7. Marwick, Ben (May 2008). "What attributes are important for the measurement of assemblage reduction intensity? Results from an experimental stone artefact assemblage with relevance to the Hoabinhian of mainland Southeast Asia". Journal of Archaeological Science. 35 (5): 1189–1200. Bibcode:2008JArSc..35.1189M. doi:10.1016/j.jas.2007.08.007.
  8. Speth, J.D. (1981). "The Role of Platform Angle and Core Size in Hard Hammer Percussion Flaking". Lithic Technology. 10 (1): 16–721. doi:10.1080/01977261.1981.11720840.
  9. Patterson, Leland W. (1990). "Characteristics of Bifacial-Reduction Flake-Size Distribution". American Antiquity. 55 (3): 550–558. doi:10.2307/281285. JSTOR   281285. S2CID   164139945.
  10. Cotterell, B.; Kamminga, J. (1987). "The formation of flakes". American Antiquity. 52 (4): 675–708. doi:10.2307/281378. JSTOR   281378. S2CID   163565502.
  11. Shott, Michael. J. (2007). "Flake Size from Platform Attributes: Predictive and Empirical Approaches". Journal of Archaeological Science. 27 (10): 877–894. doi:10.1006/jasc.1999.0499.
  12. Kuhn, S. (1990). "A geometric index of reduction for unifacial stone tools". Journal of Archaeological Science. 17 (5): 583–593. Bibcode:1990JArSc..17..583K. doi:10.1016/0305-4403(90)90038-7.
  13. Eren, M.; Sampson, C (2009). "Kuhn's Geometric Index of Unifacial Stone Tool Reduction (GIUR): does it measure missing flake mass?". Journal of Archaeological Science. 36 (6): 1243–1247. Bibcode:2009JArSc..36.1243E. doi:10.1016/j.jas.2009.01.011.
  14. Hiscock, P.; Clarkson, C. (2009). "The reality of reduction experiments and the GIUR: reply to Eren and Sampson". Journal of Archaeological Science. 36 (7): 1576–1581. Bibcode:2009JArSc..36.1576H. doi:10.1016/j.jas.2009.03.019. hdl: 1885/54549 .
  15. Eren, Metin I.; Sampson, C. Garth (2008). "Kuhn's Geometric Index of Unifacial Stone Tool Reduction (GIUR): does it measure missing flake mass?". Journal of Archaeological Science. 36 (6): 1243–1247. Bibcode:2009JArSc..36.1243E. doi:10.1016/j.jas.2009.01.011.
  16. Grosman, Leore; Karasik, Avshalom; Harush, Ortal; Smilansky, Uzy (2014). "Archaeology in Three Dimensions: Computer-Based Methods in Archaeological Research". Journal of Eastern Mediterranean Archaeology and Heritage Studies. 2 (1): 48–64. doi:10.5325/jeasmedarcherstu.2.1.0048. ISSN   2166-3556. S2CID   60936690.
  17. Hiscock, Peter (2004). "Slippery and Billy: intention, selection and equifinality in lithic artefacts" (PDF). Cambridge Archaeological Journal. 14 (1): 71–77. doi:10.1017/s0959774304230050. hdl: 1885/42661 .
  18. 1 2 Shott, M.J. (1986). "Technological organization and settlement mobility: An ethnographic examination". Journal of Anthropological Research. 42 (1): 15–51. doi:10.1086/jar.42.1.3630378. JSTOR   3630378. S2CID   45430590.
  19. Driscoll, Killian. "Irish lithic landscapes macroscopic petrographic geochemical characterisation chert". lithicsireland.ie. Retrieved 8 April 2017.
  20. Yellin, Joseph; Thomas E., Levy; Yorke M., Rowan (1996). "New evidence on prehistoric trade routes: the obsidian evidence from Gilat, Israel". Journal of Field Archaeology. 23 (3): 361–368. doi:10.1179/009346996791973873.
  21. Beck, Charlotte; Taylor, Amanda K.; Jones, George T.; Fadem, Cynthia M.; Cook, Caitlyn R.; Millward, Sara A. (2002). "Rocks are heavy: transport costs and Paleoarchaic quarry behavior in the Great Basin". Journal of Anthropological Archaeology. 21 (4): 481–507. doi:10.1016/s0278-4165(02)00007-7.