Medieval bioarchaeology

Last updated
Medieval skeleton from the Netherlands Skeleton from the middle ages in Netherlands.jpg
Medieval skeleton from the Netherlands

Medieval Bioarchaeology is the study of human remains recovered from medieval archaeological sites. Bioarchaeology aims to understand populations through the analysis of human skeletal remains and this application of bioarchaeology specifically aims to understand medieval populations. There is an interest in the Medieval Period when it comes to bioarchaeology, because of how differently people lived back then as opposed to now, in regards to not only their everyday life, but during times of war and famine as well. The biology and behavior of those that lived in the Medieval Period can be analyzed by understanding their health and lifestyle choices. [1]

Contents

Non-specific stress indicators

Dental non-specific stress indicators

Enamel hypoplasia

Linear enamel hypoplasias are examples of periods of stress or disruption in a child's health where horizontal bands form on the teeth that can be examined macroscopically and represent a localized decrease in enamel thickness. Enamel hypoplasias are used in bioarchaeological research as markers of childhood physiological stress. [2]

Teeth displaying enamel hypoplasia lines Teeth displaying Enamel hypoplasia lines.jpg
Teeth displaying enamel hypoplasia lines

Justyna Jolanta Miszkiewicz, from the University of Kent, studied linear enamel hypoplasia and age-at-death in the medieval population of Canterbury, UK. She specifically focused on the populations at St. Gregory's Priory and Cemetery. She found 374 teeth with linear enamel hypoplasia in either the mandibular or maxillary permanent teeth. She also found that there were significantly greater frequency of linear enamel hypoplasia in the cemetery compared to the Priory. The mean number of teeth with lLinear enamel hypoplasia in the cemetery was 17.6 and the mean number at the Priory was 7.9. This study also measured age-at-death of the individuals as well as what types of social groups they represented. The results indicated that childhood stress might reflect adult mortality and that the health of individuals from diverse social backgrounds can be assessed using linear enamel hypoplasia analysis. [2]

Skeletal non-specific stress indicators

Porotic hyperostosis and cribra orbitalia

Porotic hyperostosis is a pathological condition affecting the cranial vault. It is characterized by porosities in the outer table of the cranial vault or orbital roof. [3] When porosities are exhibited in the orbital roof it is called cribra orbitalia. Since the 1950s, the most widely accepted probable cause of porotic hyperostosis and cribra orbitalia is chronic iron-deficiency anemia. [4] While dietary deficiencies are the most probable cause, other possibilities include nutrients lost to intestinal parasites. [5]

Anne L. Grauer, Professor of Anthropology at Loyola University Chicago, assessed the presence of porotic hyperostosis and periosteal reactions in the population (n=1,014) from St. Helen-on-the-Walls in York, England. She used porotic hyperostosis and periosteal reactions to examine health and disease in urban medieval England. Grauer discovered that 58% of the population displayed evidence of porotic hyperostosis and 21.5% displayed evidence of periosteal reactions. [6]

Cribra orbitalia in a young child. Cribra Orbitalia.JPG
Cribra orbitalia in a young child.

In 2002, J. Piontek and T. Kozlowski, from the Adam Mickiewicz University and Nicholas Copernicus University, respectively, studied that frequency of cribra orbitalia in Medieval Polish populations. The purpose of this study was to present data on the frequency of cribra orbitalia in skulls of children from a cemetery in Gruczno, Poland and compare these results with the frequency of cribra orbitalia in adult populations. They found frequencies of 47.1% of cribra orbitalia in children aged 0–7 at death and frequencies of 50% in children who died between ages 7 and 15. The authors concluded that the living conditions of the medieval populations in Gruczno did not necessarily guarantee the good health of children and adolescents due to the exposure of pathological factors that disturbed their growth and development. [7]

Harris lines

Harris lines are stress indicators on the skeleton that form due to malnutrition, disease, or other stress factors during childhood. [8] During this time, bone growth is temporarily stopped or slowed down but bone mineralization will continue. Once the stress has decreased or stopped, bone growth will resume, which results in a line of increased mineral density that can be seen in radiographs. If there is no recovery from stress, no line will be formed. [5] [9]

Harris lines in child with growth arrest due to bone disease. GrowthArrestLines.png
Harris lines in child with growth arrest due to bone disease.

Ameen et al. (2005) studied the incidence of Harris lines in medieval populations from Berne, Switzerland. the scholars from the University Hospital of Berne collected radiographs of the tibia from 112 well-preserved skeletons that lived during the 8th-15th centuries. They also compared their results with the radiographs of 138 living patients in the same geographic region. They found evidence of Harris lines in 88 of the 112 (80%) medieval skeletons and in 28 of 138 (20%) of the living individuals. In both populations, Harris lines were found at age 2 and between ages 8 and 12. The occurrence of Harris lines was associated with degenerative bone disease, trauma, osteoporosis, peripheral vascular diseases, rickets, rheumatoid arthritis, and bony deformities. The authors concluded that the medieval populations in Switzerland probably experienced difficult living situations and poor hygienic conditions and the Harris lines in children of the population reflected poor care and neglect. [10]

Cortisol level in hair

Changes in protein and cortisol levels during growth and stress will have an impact on the composition of hair. These changes usually reflect the last few months before the death of a person, not including the last two weeks. Hair samples can be analyzed by looking at the levels of Nitrogen-and-carbon-isotopes. Cortisol levels from hair samples can provide evidence for stressors caused due to physical events but usually reflect dietary changes and movement. [11]

Mechanical stress and activity indicators

Bioarchaeologists can study the effects that activities and workload have on the skeleton in order to understand the kinds of labor that people were doing in the past. Stress markers can also indicate patterns in the division of labor and how certain activities were structured within society. Wolff's law states that bones are affected and remodeled by repetitive physical activity or inactivity. [12] Mechanical stress changes the cross-sections of bones and may, to a limited extent change entheses, while prolonged inactivity can lead to bone loss. [13] [14] [15] Because things had to be done manually, such as agriculture and carrying activities, physical stress affected both men and women during this time. Degenerative disorders were more prominent than disease. Physical stress is easier to see on the bones, compared to disease on the bone, because it takes a significant amount of time for evidence to appear on the bone, and without medical treatment, these people would die before the disease would show itself on the bone. [16]

Injury and workload

Amanda Agnew and Hedy Justus, from the Ohio State University, studied examples of trauma and stress in the population of Medieval Giecz in Poland. During this time, Giecz was an important political and religious center. The sample included 275 burials that were analyzed for trauma and stress, but only adults were analyzed for trauma. Most cases of trauma were non-violent, although 3.4% of individuals with trauma had injuries that were clearly due to violent intent. The low evidence of intentional violence led the authors to conclude the unlikelihood of members of the population being involved in military activity, which was common in the area. However, the stress-related traumatic injuries indicated a population that had a very laborious lifestyle, often associated with agricultural activities. For example, the population exhibited a high frequency of spinal trauma, including compression fractures and spondylolysis. Vertebral trauma is indicative of heavy compression loads over long periods of time. The authors also studied osteochondritis dissecans, which can be caused by repetitive traumatic events and the overuse of joints due to physical activity. The study concluded that heavy workload and strenuous activities extended to males, females, and adolescents. Furthermore, the authors found that the population at Giecz experienced stressful environmental conditions like poor nutrition and infections. [17]

As far as vertebral trauma goes, it was very common in most adults, especially males, according to H. Nathan's study done on 400 vertebral columns in hopes of their osteophytes providing accurate results. This study was on the development according to age, race, and sex with considerations as to their etiology and significance. This study showed that 100% of the 400 individuals developed either spondylosis deformans or osteochondrosis by the time they were 40 years old, which was most likely due to historic gender-specific labor distribution. [16]

Diet and dental health

Diet is an important area of study for bioarchaeologists because it can reveal many aspects of an individual and the population. The types of foods that were produced and eaten can yield information on how society was structured, on various settlement patterns, and on how healthy or unhealthy the population was. [18]

Diet is studied through a variety of methods. Bioarchaeologists can examine teeth and look for the presence or absence of dental caries (cavities), use tooth wear analysis, or they can use stable isotope analysis, specifically through carbon and nitrogen isotopes. [3]

Dental caries

Dental caries is the scientific term for cavities or tooth decay as a result of bacteria fermenting carbohydrates in the mouth. Caries is associated with poor cleaning of the mouth and receding gums that expose the roots of teeth. [19]

A study done on the frequency of dental caries in a medieval population in Southwest France was done by researchers at the Université Paul-Sabatier. They studied 58 adults, both men and women, and found the prevalence of dental caries to be 17.46% with the most frequent types of caries being occlusal or proximal. Additionally, caries was mostly found on the second and third molars in both maxillary and mandibular teeth. The study found no statistically significant difference between the frequencies of caries in men and women but noted that the low levels of caries found overall was most likely due to attrition and noncariogenic foods. [20]

Stable isotope analysis

Stable isotope analysis allows bioarchaeologists to study diet and migration in populations. Analysis of carbon and nitrogen in bone collagen yields information about diet and nutrition while the analysis of strontium and oxygen can reveal migration patterns of individuals. [18] [21] Isotope analyzing can be used to study the food source through δ13C and δ15N values, as a higher in δ15N is an indication of higher reliability on aquatic food source compared to land-based food source. [22] Oxygen signatures can get into teeth before an individual reaches 12 years of age through the consumption of ground water. [23] Variability in mammalian skeletal tissue δ18O levels is caused mainly due to consumption of various foods and water. Different environments like mountain slopes and proximity to coastal areas give varying readings depending on the baseline of the area that can help trace movement. [24] These signatures differ from area to area and the oxygen's signatures in teeth can be compared to signatures in ground water from different regions. [25]

Anna Linderholm and Anna Kjellström, from Stockholm University in Sweden, studied approximately 800 individuals from several medieval cemeteries in Sigtuna, Sweden, to understand social differences between them. One portion of the study was dedicated to using stable isotope analysis on individuals to reveal any dietary differences related to class. The authors used stable isotope analysis on a total of 25 individuals and five animals to aid in their understanding of social differences at these sites. Six of the individuals came from a cemetery on the outskirts of a churchyard where many victims expressed signs of leprosy. This location suggests that these individuals belonged to a lower social stratum. Their results indicated no significant differences in δ13C and δ15N values which means that the individuals buried in the "healthy" regions and those buried in the "unhealthy" regions appeared to have had similar diets. [26]

In 2013, Kristina Killgrove, a classicist and bioarchaeologist, studied individuals from a medieval cemetery site in Berlin, Germany. The cemetery, known as Petriplatz, contained over 3,000 individuals who were buried between the mid-13th century and the mid-18th century. The cemetery was excavated by directors Claudia Melisch and Jamie Sewell between 2007 and 2010. Killgrove analyzed the first molars of 22 individuals from roughly 1200–1300 A.D. and found that three of the individuals showed strontium levels that are two standard deviations outside of the local range. Killgrove concluded that it is possible that two of the individuals migrated to Berlin from west-central Germany and the other migrated from south-central Germany. [27]

Related Research Articles

<span class="mw-page-title-main">Human tooth</span> Calcified whitish structure in humans mouths used to break down food

Human teeth function to mechanically break down items of food by cutting and crushing them in preparation for swallowing and digesting. As such, they are considered part of the human digestive system. Humans have four types of teeth: incisors, canines, premolars, and molars, which each have a specific function. The incisors cut the food, the canines tear the food and the molars and premolars crush the food. The roots of teeth are embedded in the maxilla or the mandible and are covered by gums. Teeth are made of multiple tissues of varying density and hardness.

<span class="mw-page-title-main">Forensic anthropology</span> Application of the science of anthropology in a legal setting

Forensic anthropology is the application of the anatomical science of anthropology and its various subfields, including forensic archaeology and forensic taphonomy, in a legal setting. A forensic anthropologist can assist in the identification of deceased individuals whose remains are decomposed, burned, mutilated or otherwise unrecognizable, as might happen in a plane crash. Forensic anthropologists are also instrumental in the investigation and documentation of genocide and mass graves. Along with forensic pathologists, forensic dentists, and homicide investigators, forensic anthropologists commonly testify in court as expert witnesses. Using physical markers present on a skeleton, a forensic anthropologist can potentially determine a person's age, sex, stature, and race. In addition to identifying physical characteristics of the individual, forensic anthropologists can use skeletal abnormalities to potentially determine cause of death, past trauma such as broken bones or medical procedures, as well as diseases such as bone cancer.

The term bioarchaeology has been attributed to British archaeologist Grahame Clark who, in 1972, defined it as the study of animal and human bones from archaeological sites. Redefined in 1977 by Jane Buikstra, bioarchaeology in the United States now refers to the scientific study of human remains from archaeological sites, a discipline known in other countries as osteoarchaeology, osteology or palaeo-osteology. Compared to bioarchaeology, osteoarchaeology is the scientific study that solely focus on the human skeleton. The human skeleton is used to tell us about health, lifestyle, diet, mortality and physique of the past. Furthermore, palaeo-osteology is simple the study of ancient bones.

<span class="mw-page-title-main">Dental fluorosis</span> Medical condition

Dental fluorosis is a common disorder, characterized by hypomineralization of tooth enamel caused by ingestion of excessive fluoride during enamel formation.

The Robert J. Terry Anatomical Skeletal Collection is a collection of some 1,728 human skeletons held by the Department of Anthropology of the National Museum of Natural History of the Smithsonian Institution, Washington, D.C., United States.

<span class="mw-page-title-main">Hyperostosis</span> Medical condition

Hyperostosis is an excessive growth of bone. It may lead to exostosis. It occurs in many musculoskeletal disorders.

Ancient Mayan social classes included a complex relationship between elites, including kings and merchants, and commoners. The highest ancient Mayan social class included a single centralized leader known as the king or Kʼuhul ajaw, who was most often a man but occasionally a woman. The king's power derived from religion and control over resources, and this power was reinforced by other elites, including merchants. This faction of ancient Mayan social classes arose when some individuals gained greater access to resources than others, increased internal and external trade, and specialized in the manufacturing and selling of goods. This influx of wealth for subsections of the ancient Mayan population further subdivided the upper and lower classes, and wealth became a source of power for the elites.

<span class="mw-page-title-main">Enamel hypoplasia</span> Medical condition

Enamel hypoplasia is a defect of the teeth in which the enamel is deficient in quantity, caused by defective enamel matrix formation during enamel development, as a result of inherited and acquired systemic condition(s). It can be identified as missing tooth structure and may manifest as pits or grooves in the crown of the affected teeth, and in extreme cases, some portions of the crown of the tooth may have no enamel, exposing the dentin. It may be generalized across the dentition or localized to a few teeth. Defects are categorized by shape or location. Common categories are pit-form, plane-form, linear-form, and localised enamel hypoplasia. Hypoplastic lesions are found in areas of the teeth where the enamel was being actively formed during a systemic or local disturbance. Since the formation of enamel extends over a long period of time, defects may be confined to one well-defined area of the affected teeth. Knowledge of chronological development of deciduous and permanent teeth makes it possible to determine the approximate time at which the developmental disturbance occurred. Enamel hypoplasia varies substantially among populations and can be used to infer health and behavioural impacts from the past. Defects have also been found in a variety of non-human animals.

<span class="mw-page-title-main">Neanderthal anatomy</span> Anatomical composition of the Neanderthal body

Neanderthal anatomy differed from modern humans in that they had a more robust build and distinctive morphological features, especially on the cranium, which gradually accumulated more derived aspects, particularly in certain isolated geographic regions. This robust build was an effective adaptation for Neanderthals, as they lived in the cold environments of Europe. In which they also had to operate in Europe's dense forest landscape that was extremely different from the environments of the African grassland plains that Homo sapiens adapted to with a different anatomical build.

Stillwater Marsh is an archaeology locality in the Carson Sink in eastern Nevada discovered when heavy flooding in the 1980s unearthed many human remains. The great diversity in plant life and altitudinally-determined microenvironments that surrounded the marsh helped to make it a popular place to live, as evidenced by archaeological findings. At Stillwater Marsh, skeletal remains were the primary means used to determine how people lived in the area. As large numbers of skeletons had not previously been found at Great Basin sites, Stillwater Marsh offered a remarkable opportunity to learn about daily life, as reflected in the human remains.

George J. Armelagos was an American anthropologist, and Goodrich C. White Professor of Anthropology at Emory University in Atlanta, Georgia. Armelagos significantly impacted the field of physical anthropology and biological anthropology. His work has provided invaluable contributions to the theoretical and methodological understanding human disease, diet and human variation within an evolutionary context. Relevant topics include epidemiology, paleopathology, paleodemography, bioarchaeology, evolutionary medicine, and the social interpretations of race, among others.

<span class="mw-page-title-main">Tooth pathology</span> Medical condition

Tooth pathology is any condition of the teeth that can be congenital or acquired. Sometimes a congenital tooth disease is called a tooth abnormality. These are among the most common diseases in humans The prevention, diagnosis, treatment and rehabilitation of these diseases are the base to the dentistry profession, in which are dentists and dental hygienists, and its sub-specialties, such as oral medicine, oral and maxillofacial surgery, and endodontics. Tooth pathology is usually separated from other types of dental issues, including enamel hypoplasia and tooth wear.

<span class="mw-page-title-main">Tricho–dento–osseous syndrome</span> Medical condition

Tricho–dento–osseous syndrome (TDO) is a rare, systemic, autosomal dominant genetic disorder that causes defects in hair, teeth, and bones respectively. This disease is present at birth. TDO has been shown to occur in areas of close geographic proximity and within families; most recent documented cases are in Virginia, Tennessee, and North Carolina. The cause of this disease is a mutation in the DLX3 gene, which controls hair follicle differentiation and induction of bone formation. All patients with TDO have two co-existing conditions called enamel hypoplasia and taurodontism in which the abnormal growth patterns of the teeth result in severe external and internal defects. The hair defects are characterized as being rough, course, with profuse shedding. Hair is curly and kinky at infancy but later straightens. Dental defects are characterized by dark-yellow/brownish colored teeth, thin and/or possibly pitted enamel, that is malformed. The teeth can also look normal in color, but also have a physical impression of extreme fragility and thinness in appearance. Additionally, severe underbites where the top and bottom teeth fail to correctly align may be present; it is common for the affected individual to have a larger, more pronounced lower jaw and longer bones. The physical deformities that TDO causes become more noticeable with age, and emotional support for the family as well as the affected individual is frequently recommended. Adequate treatment for TDO is a team based approach, mostly involving physical therapists, dentists, and oromaxillofacial surgeons. Genetic counseling is also recommended.

Anzick-1 is a Paleo-Indian male infant whose remains were found in south central Montana, United States, in 1968, and date to 13,000–12,850 years BP. The child was found with more than 115 tools made of stone and antlers and dusted with red ocher, suggesting an honorary burial. Anzick-1 is the only human who has been discovered from the Clovis Complex, and is the first ancient Native American genome to be fully sequenced.

<span class="mw-page-title-main">Linear enamel hypoplasia</span>

Linear enamel hypoplasia is a failure of the tooth enamel to develop correctly during growth, leaving bands of reduced enamel on a tooth surface. It is the most common type of enamel hypoplasia reported in clinical and archaeological samples, with other types including plane-form enamel hypoplasia and pitting enamel hypoplasia.

Vera Tiesler is a bioarchaeologist, and a full research professor in the department of Anthroprological Sciences at the Autonomous University of Yucatán in Mexico. She is a specialist in Maya civilization remains.

Mortuary archaeology is the study of human remains in their archaeological context. This is a known sub-field of bioarchaeology, which is a field that focuses on gathering important information based on the skeleton of an individual. Bioarchaeology stems from the practice of human osteology which is the anatomical study of skeletal remains. Mortuary archaeology, as well as the overarching field it resides in, aims to generate an understanding of disease, migration, health, nutrition, gender, status, and kinship among past populations. Ultimately, these topics help to produce a picture of the daily lives of past individuals. Mortuary archaeologists draw upon the humanities, as well as social and hard sciences to have a full understanding of the individual.

<span class="mw-page-title-main">Near Eastern bioarchaeology</span> Archaeological sub-discipline

Near Eastern bioarchaeology covers the study of human skeletal remains from archaeological sites in Cyprus, Egypt, Levantine coast, Jordan, Turkey, Iran, Saudi Arabia, Qatar, Kuwait, Bahrain, United Arab Emirates, Oman, and Yemen.

Sharon Nell DeWitte is an American bioarchaeologist. She is a professor in the Department of Anthropology at the University of South Carolina and a Fellow of the American Association for the Advancement of Science. Her research interests include the Black Death.

The analysis of dental remains is a valuable tool to archaeologists. Teeth are hard, highly mineralised and chemically stable, so therefore preserve well and are one of the most commonly found animals remains. Analysis of these remains also yields a wealth of information. It can not only be used to determine the sex and age of the individual whose mandibular or dental remains have been found, but can also shed light on their diet, pathology, and even their geographic origins through isotope analysis.

References

  1. Larsen, Clark (June 2002). "Bioarchaeology: The Lives and Lifestyles of Past People" (PDF). Journal of Archaeological Research. 10 (2): 119–166. doi:10.1023/A:1015267705803. S2CID   145654453.
  2. 1 2 Miszkiewicz, Justyna Jolanta (2015-01-01). "Linear Enamel Hypoplasia and Age-at-Death at Medieval (11th–16th Centuries) St. Gregory's Priory and Cemetery, Canterbury, UK". International Journal of Osteoarchaeology. 25 (1): 79–87. doi:10.1002/oa.2265. ISSN   1099-1212.
  3. 1 2 Lallo, John W.; Armelagos, George J.; Mensforth, Robert P. (1977). "The Role of Diet, Disease, and Physiology in the Origin of Porotic Hyperostosis". Human Biology. 49 (3): 471–483. ISSN   0018-7143. JSTOR   41464457. PMID   892766.
  4. Walker, Phillip, Rhonda R. Bathurst, Rebecca Richman, Thor Gjerdrum, and Valerie A. Andrushko (2009). "The Causes of Porotic Hyperostosis and Cribra Orbitalia: A Reappraisal of the Iron-Deficiency-Anemia Hypothesis" (PDF). American Journal of Physical Anthropology. 139 (2): 109–125. doi:10.1002/ajpa.21031. PMID   19280675. Archived from the original (PDF) on 2015-09-11.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. 1 2 Schutkowski, Holger (2008). "Thoughts for Food: Evidence and Meaning of Past Dietary Habits". Cambridge Studies in Biological and Evolutionary Anthropology.
  6. Grauer, A. L. (1993-06-01). "Patterns of anemia and infection from medieval York, England". American Journal of Physical Anthropology. 91 (2): 203–213. doi:10.1002/ajpa.1330910206. ISSN   1096-8644. PMID   8317561.
  7. Piontek, J.; Kozlowski, T. (2002-05-01). "Frequency of cribra orbitalia in the subadult medieval population from Gruczno, Poland". International Journal of Osteoarchaeology. 12 (3): 202–208. doi:10.1002/oa.615. ISSN   1099-1212.
  8. Mays, Simon (1995-07-01). "The Relationship between Harris Lines and other Aspects of Skeletal Development in Adults and Juveniles". Journal of Archaeological Science. 22 (4): 511–520. Bibcode:1995JArSc..22..511M. doi:10.1006/jasc.1995.0049. ISSN   0305-4403.
  9. Danforth, Marie Elaine (1999). "Nutrition and Politics in Prehistory". Annual Review of Anthropology. 28: 1–25. doi:10.1146/annurev.anthro.28.1.1.
  10. Ameen, S.; Staub, L.; Ulrich, S.; Vock, P.; Ballmer, F.; Anderson, S. E. (2005-05-01). "Harris lines of the tibia across centuries: a comparison of two populations, medieval and contemporary in Central Europe" (PDF). Skeletal Radiology. 34 (5): 279–284. doi:10.1007/s00256-004-0841-3. ISSN   0364-2348. PMID   15586281. S2CID   20136085.
  11. D'Ortenzio, Lori; Brickley, Megan; Schwarcz, Henry; Prowse, Tracy (2015). "You are not what you eat during physiological stress: Isotopic evaluation of human hair". American Journal of Physical Anthropology. 157 (3): 374–388. doi:10.1002/ajpa.22722. ISSN   1096-8644. PMID   25711625.
  12. Wolff, Julius (1893). "Review: Das Gesetz Der Transformation Der Knochen (the Law of the Transformation of Bones)". The British Medical Journal. 1 (1673): 124.
  13. Robbins Schug, Gwen; Goldman, Haviva M (2014). "Birth is but our death begun: a bioarchaeological assessment of skeletal emaciation in immature human skeletons in the context of environmental, social, and subsistence transition" (PDF). American Journal of Physical Anthropology. 155 (2): 243–259. doi:10.1002/ajpa.22536. PMID   24839102. S2CID   39512115.
  14. Scott, J.H. (1957). "Muscle Growth and Function in Relation to Skeletal Morphology". American Journal of Physical Anthropology. 15 (2): 197–234. doi:10.1002/ajpa.1330150210. PMID   13470043.
  15. Jurmain, Robert; Cardoso, Francisca Alves; Henderson, Charlotte; Villotte, Sébastien (2011-01-01). Grauer, Anne L. (ed.). A Companion to Paleopathology. Wiley-Blackwell. pp. 531–552. doi:10.1002/9781444345940.ch29. ISBN   9781444345940.
  16. 1 2 Hoffmann, Maria; Boni, Thomas; Kurt, Alt; Ulrich, Woitek; Frank, Ruhli (March 2008). "Paleopathologies of the Vertebral Column in Medieval Skeletons" (PDF). Anthropologischer Anzeiger. 66 (1): 1–17. doi:10.1127/aa/66/2008/1. JSTOR   29542923 via JSTOR.
  17. Agnew, Amanda M. & Hedy M. Justus (2014). "Preliminary investigations of the bioarchaeology of Medieval Giecz (XI–XII c.): examples of trauma and stress". Anthropological Review. 77 (2): 189–203. doi: 10.2478/anre-2014-0015 .
  18. 1 2 Larsen, Clark Spencer (2002). "Bioarchaeology: The Lives and Lifestyles of Past People" (PDF). Journal of Archaeological Research. 10 (2): 119–166. doi:10.1023/A:1015267705803. S2CID   145654453.
  19. Silk, H (2014). "Diseases of the mouth". Primary Care. 41 (1): 75–90. doi:10.1016/j.pop.2013.10.011. PMID   24439882. S2CID   9127595.
  20. Esclassan R, Astie F, Sevin A, Donat R, Lucas S, Grimoud AM (2008). "Study of the prevalence and distribution of dental caries in a medieval population in Southwest France". Revue de Stomatologie et de Chirurgie Maxillo-faciale. 109 (1): 28–35. doi:10.1016/j.stomax.2007.10.004. PMID   18177908.
  21. Mays, Simon. The Archaeology of Human Bones. 1998. Second ed. New York: Routledge, 2010. 2010
  22. The Routledge handbook of global historical archaeology. Orser, Charles E.,, Zarankin, Andrés,, Funari, Pedro Paulo A.,, Lawrence, Susan, 1966-, Symonds, James, Ph. D. Abingdon. 2020. ISBN   978-1-315-20284-6. OCLC   1129397282.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  23. Budd, Paul; Millard, Andrew; Chenery, Carolyn; Lucy, Sam; Roberts, Charlotte (2004-03-01). "Investigating population movement by stable isotope analysis: a report from Britain" (PDF). Antiquity. 78 (299): 127–141. doi:10.1017/S0003598X0009298X. ISSN   1745-1744. S2CID   35663561.
  24. Pederzani, Sarah; Britton, Kate (2019-01-01). "Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities". Earth-Science Reviews. 188: 77–107. Bibcode:2019ESRv..188...77P. doi:10.1016/j.earscirev.2018.11.005. hdl: 2164/13249 . ISSN   0012-8252. S2CID   133661731.
  25. Podlesak, David W.; Torregrossa, Ann-Marie; Ehleringer, James R.; Dearing, M. Denise; Passey, Benjamin H.; Cerling, Thure E. (2008-01-01). "Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal". Geochimica et Cosmochimica Acta. 72 (1): 19–35. Bibcode:2008GeCoA..72...19P. doi:10.1016/j.gca.2007.10.003. ISSN   0016-7037.
  26. Linderholm, Anna; Kjellström, Anna (2011-04-01). "Stable isotope analysis of a medieval skeletal sample indicative of systemic disease from Sigtuna Sweden". Journal of Archaeological Science. 38 (4): 925–933. Bibcode:2011JArSc..38..925L. doi:10.1016/j.jas.2010.11.022.
  27. Killgrove, Kristina (2013). "Whence the Earliest Berliners? (Part 1)". Mitteilungen der Berliner Gesellschaft für Anthropologie, Ethnologie und Urgeschichte. 32: 107–120.