Salt dome

Last updated
Astronaut photography of Jashak salt dome (the white area in the middle) in the Zagros Mountains in Bushehr Province, Iran ZagrosMtns SaltDome ISS012-E-18774.jpg
Astronaut photography of Jashak salt dome (the white area in the middle) in the Zagros Mountains in Bushehr Province, Iran
Salt dome in Fars Province, Iran Salt dome Hadi Karimi.jpg
Salt dome in Fars Province, Iran

A salt dome is a type of structural dome formed when salt (or other evaporite minerals) intrudes into overlying rocks in a process known as diapirism. Salt domes can have unique surface and subsurface structures, and they can be discovered using techniques such as seismic reflection. They are important in petroleum geology as they can function as petroleum traps.

Contents

Formation

Diagram showing formation of salt domes SaltTectonics1.jpg
Diagram showing formation of salt domes

Stratigraphically, salt basins developed periodically from the Proterozoic to the Neogene. The formation of a salt dome begins with the deposition of salt in a restricted basin. In these basins, the outflow of water exceeds inflow. Specifically, the basin loses water through evaporation, resulting in the precipitation and deposition of salt. While the rate of sedimentation of salt is significantly larger than the rate of sedimentation of clastics, it is recognized that a single evaporation event is rarely enough to produce the vast quantities of salt needed to form a layer thick enough for the formation of salt diapirs, indicating that a sustained period of episodic flooding and evaporation of the basin must occur. [1]

Over time, the layer of salt is covered with deposited sediment, becoming buried under an increasingly large overburden. Previously, researchers believed that the compaction of overlying sediment and subsequent decrease in buoyancy led to salt rising and intruding into the overburden due to its ductility, thereby creating a salt diapir. However, after the 1980s, the primary force that drives the flow of salt is considered to be differential loading. [2]

Differential loading can be caused by gravitational forces (gravitational loading), forced displacement of salt boundaries (displacement loading), or thermal gradients (thermal loading). [2] The flow of the salt overcomes the strength of the overburden as well as boundary friction aided by overburden extension, erosion, thrust faults, ductile thinning, or other forms of regional deformation. The vertical growth of salt formations creates pressure on the upward surface, causing extension and faulting. [3] Once the salt completely pierces the overburden, it can rise through a process known as passive diapirism where the accumulation of sediments around the diapir contribute to its growth and eventually form into a dome. [2]

Discovery mechanisms

Some salt domes can be seen from Earth's surface. They can also be located by finding unique surface structures and surrounding phenomena. For instance, salt domes can contain or be near sulfur springs and natural gas vents. [4] Some salt domes have salt sheets that extrude from the top of the dome; these are referred to as salt plugs. These plugs can coalesce to form salt canopies, which can then be remobilized by roof sedimentation, with the most prominent example in the northern Gulf of Mexico basin. Another structure that can form from salt domes are salt welds. These occur when the growth of a dome is prevented by an exhausted supply of salt, and the top and bottom contacts merge. [2]

Salt domes have also been located using seismic refraction and seismic reflection. The latter was developed based on techniques from the former and is more effective. Seismic refraction uses seismic waves to characterize subsurface geologic conditions and structures. Seismic reflection highlights the presence of a stark density contrast between the salt and surrounding sediment. Seismic techniques are particularly effective as salt domes are typically depressed blocks of crust bordered by parallel normal faults (graben) that can be flanked by reverse faults. [5] Advances in seismic reflection and the expansion of offshore petroleum exploration efforts led to the discovery of numerous salt domes soon after World War II. [6]

Commercial uses

Salt domes are the site of many of the world's hydrocarbon provinces. [6] The rock salt of the salt dome is mostly impermeable, so, as it moves up towards the surface, it penetrates and bends existing rock along with it. As strata of rock are penetrated, they are, generally, bent upwards where they meet the dome, forming pockets and reservoirs of petroleum and natural gas (known as petroleum traps). [2] In 1901, an exploratory oil well was drilled into Spindletop Hill near Beaumont, Texas. This led to the discovery of the first salt dome, revealed the importance of salt to the formation of hydrocarbon accumulations, and produced enough oil for petroleum to become an economically feasible fuel for the United States. [4] [6] Several countries use solution mining to form caverns for holding large amounts of oil or gas reserves.

The caprock above the salt domes can contain deposits of native sulfur (recovered by the Frasch process). They can also contain deposits of metals, sodium salts, nitrates, and other substances, which can be used in products such as table salt and chemical de-icers. [6]

Occurrence

Salt domes occur in many parts of the world where there is a sufficiently thick layer of rock salt developed.

Hormuz Formation

In the Middle East, the upper Neoproterozoic salt of the Hormuz Formation is associated with widespread salt dome formation in most parts of the Persian Gulf and onshore in Iran, Iraq, United Arab Emirates, and Oman. The thicker salt is found in a series of basins: the Western Gulf, the Southern Gulf, and the Oman salt basins. [7]

Paradox Basin

End-on view of emergent Onion Creek salt dome between remnants of displaced overburden Ken Leonard - Fisher Towers - IMAG0059.JPG
End-on view of emergent Onion Creek salt dome between remnants of displaced overburden
Lateral view of emergent salt dome from ridge of remnant of displaced overburden Ken Leonard - Fisher Towers - Salt Dome P IMAG0067.JPG
Lateral view of emergent salt dome from ridge of remnant of displaced overburden

Pennsylvanian age salt of the Paradox Formation forms salt domes throughout the Paradox Basin in the US, which extends from eastern Utah, through southwestern Colorado into northwestern New Mexico.

An example of an emergent salt dome is at Onion Creek, Utah / Fisher Towers near Moab, Utah. A Paradox Formation salt body that has risen as a ridge through several hundred meters of overburden, predominantly sandstone. As the salt body rose, the overburden formed an anticline (arching upward along its center line) which fractured and eroded to expose the salt body. [8]

Barents Sea

Offshore northern Norway in the southwestern Barents Sea, thick Upper CarboniferousLower Permian salt was deposited, forming salt domes in the Hammerfest and Nordkapp basins.

Zechstein basin

In northwest Europe Upper Permian salt of the Zechstein Group has formed salt domes over the central and southern North Sea, extending eastwards into Germany.

Morocco–Nova Scotia

Upper Triassic salt forms salt domes in the Essaouira Basin onshore and offshore Morocco. An equivalent salt sequence, the Argo Formation, is associated with salt dome formation on the conjugate Nova Scotia margin.

Gulf of Mexico

Imaging of undersea salt domes in the Gulf of Mexico Map00365 (27670433694).jpg
Imaging of undersea salt domes in the Gulf of Mexico

The Gulf Coast is home to over 500 salt domes formed from Middle Jurassic Louann Salt. [4] This region is home to most of the US Strategic Petroleum Reserve. Avery Island was formed by a salt dome. [9]

South Atlantic salt basins

During the break-up of the south Atlantic, Aptian (Lower Cretaceous) age salt was deposited within the area of thinned crust on both the Brazilian and conjugate Angola/Gabon margins forming many salt domes.

Messinian salt

During the Messinian salinity crisis (Late Miocene), thick salt layers were formed as the Mediterranean Sea dried out. Later deposition, once the sea refilled, triggered the formation of salt domes.

See also

Related Research Articles

<span class="mw-page-title-main">Sedimentary basin</span> Regions of long-term subsidence creating space for infilling by sediments

Sedimentary basins are region-scale depressions of the Earth's crust where subsidence has occurred and a thick sequence of sediments have accumulated to form a large three-dimensional body of sedimentary rock. They form when long-term subsidence creates a regional depression that provides accommodation space for accumulation of sediments. Over millions or tens or hundreds of millions of years the deposition of sediment, primarily gravity-driven transportation of water-borne eroded material, acts to fill the depression. As the sediments are buried, they are subject to increasing pressure and begin the processes of compaction and lithification that transform them into sedimentary rock.

<span class="mw-page-title-main">Evaporite</span> Water-soluble mineral deposit formed by evaporation from an aqueous solution

An evaporite is a water-soluble sedimentary mineral deposit that results from concentration and crystallization by evaporation from an aqueous solution. There are two types of evaporite deposits: marine, which can also be described as ocean deposits, and non-marine, which are found in standing bodies of water such as lakes. Evaporites are considered sedimentary rocks and are formed by chemical sediments.

<span class="mw-page-title-main">Niger Delta Basin (geology)</span>

The Niger Delta Basin, also referred to as the Niger Delta province, is an extensional rift basin located in the Niger Delta and the Gulf of Guinea on the passive continental margin near the western coast of Nigeria with suspected or proven access to Cameroon, Equatorial Guinea and São Tomé and Príncipe. This basin is very complex, and it carries high economic value as it contains a very productive petroleum system. The Niger delta basin is one of the largest subaerial basins in Africa. It has a subaerial area of about 75,000 km2, a total area of 300,000 km2, and a sediment fill of 500,000 km3. The sediment fill has a depth between 9–12 km. It is composed of several different geologic formations that indicate how this basin could have formed, as well as the regional and large scale tectonics of the area. The Niger Delta Basin is an extensional basin surrounded by many other basins in the area that all formed from similar processes. The Niger Delta Basin lies in the south westernmost part of a larger tectonic structure, the Benue Trough. The other side of the basin is bounded by the Cameroon Volcanic Line and the transform passive continental margin.

<span class="mw-page-title-main">Anticline</span> In geology, an anticline is a type of fold that is an arch-like shape

In structural geology, an anticline is a type of fold that is an arch-like shape and has its oldest beds at its core, whereas a syncline is the inverse of an anticline. A typical anticline is convex up in which the hinge or crest is the location where the curvature is greatest, and the limbs are the sides of the fold that dip away from the hinge. Anticlines can be recognized and differentiated from antiforms by a sequence of rock layers that become progressively older toward the center of the fold. Therefore, if age relationships between various rock strata are unknown, the term antiform should be used.

<span class="mw-page-title-main">Diapir</span> Type of geologic intrusion

A diapir is a type of intrusion in which a more mobile and ductily deformable material is forced into brittle overlying rocks. Depending on the tectonic environment, diapirs can range from idealized mushroom-shaped Rayleigh–Taylor instability structures in regions with low tectonic stress such as in the Gulf of Mexico to narrow dikes of material that move along tectonically induced fractures in surrounding rock.

Exploration geophysics is an applied branch of geophysics and economic geology, which uses physical methods at the surface of the Earth, such as seismic, gravitational, magnetic, electrical and electromagnetic, to measure the physical properties of the subsurface, along with the anomalies in those properties. It is most often used to detect or infer the presence and position of economically useful geological deposits, such as ore minerals; fossil fuels and other hydrocarbons; geothermal reservoirs; and groundwater reservoirs. It can also be used to detect the presence of unexploded ordnance.

<span class="mw-page-title-main">Passive margin</span> Transition between oceanic and continental lithosphere that is not an active plate margin

A passive margin is the transition between oceanic and continental lithosphere that is not an active plate margin. A passive margin forms by sedimentation above an ancient rift, now marked by transitional lithosphere. Continental rifting forms new ocean basins. Eventually the continental rift forms a mid-ocean ridge and the locus of extension moves away from the continent-ocean boundary. The transition between the continental and oceanic lithosphere that was originally formed by rifting is known as a passive margin.

<span class="mw-page-title-main">Dome (geology)</span> Geological deformation structure

A dome is a feature in structural geology where a circular part of the Earth's surface has been pushed upward, tilting the pre-existing layers of earth away from the center. In technical terms, it consists of symmetrical anticlines that intersect each other at their respective apices. Intact, domes are distinct, rounded, spherical-to-ellipsoidal-shaped protrusions on the Earth's surface. A slice parallel to Earth's surface of a dome features concentric rings of strata. If the top of a dome has been eroded flat, the resulting structure in plan view appears as a bullseye, with the youngest rock layers at the outside, and each ring growing progressively older moving inwards. These strata would have been horizontal at the time of deposition, then later deformed by the uplift associated with dome formation.

<span class="mw-page-title-main">Salt glacier</span> Flow of solid salt on Earths surface

A salt glacier is a rare flow of salt that is created when a rising diapir in a salt dome breaches the surface of Earth. The name ‘salt glacier’ was given to this phenomenon due to the similarity of movement when compared with ice glaciers. The causes of these formations is primarily due to salt's unique properties and its surrounding geologic environment. A rising body of salt is referred to as a diapir; which rises to the surface and feeds the salt glacier. Salt structures are usually composed of halite, anhydrite, gypsum and clay minerals. Clays may be brought up with the salt, turning it dark. These salt flows are rare on Earth. In a more recent discovery, scientists have found that they also occur on Mars, but are composed of sulfates. A paper published in November 2023 suggests that salt glaciers composed of halite might also be present on Mercury.

<span class="mw-page-title-main">Salt tectonics</span> Geometries and processes associated with the presence of significant thicknesses of evaporites

Salt tectonics, or halokinesis, or halotectonics, is concerned with the geometries and processes associated with the presence of significant thicknesses of evaporites containing rock salt within a stratigraphic sequence of rocks. This is due both to the low density of salt, which does not increase with burial, and its low strength.

The salt tectonics off the Louisiana gulf coast can be explained through two possible methods. The first method attributes spreading of the salt because of sedimentary loading while the second method points to slope instability as the primary cause of gliding of the salt. The first method results in the formation of growth faults in the overlying sediment. Growth faults are normal faults that occur simultaneously with sedimentation, causing them to have thicker sediment layers on the downthrown sides of the faults. In the second method both the salt and the sediment are moving, making it more likely to migrate.

<span class="mw-page-title-main">Growth fault</span>

Growth faults are syndepositional or syn-sedimentary extensional faults that initiate and evolve at the margins of continental plates. They extend parallel to passive margins that have high sediment supply. Their fault plane dips mostly toward the basin and has long-term continuous displacement. Figure one shows a growth fault with a concave upward fault plane that has high updip angle and flattened at its base into zone of detachment or décollement. This angle is continuously changing from nearly vertical in the updip area to nearly horizontal in the downdip area.

<span class="mw-page-title-main">Salt surface structures</span> Geologic feature

Salt surface structures are extensions of salt tectonics that form at the Earth's surface when either diapirs or salt sheets pierce through the overlying strata. They can occur in any location where there are salt deposits, namely in cratonic basins, synrift basins, passive margins and collisional margins. These are environments where mass quantities of water collect and then evaporate; leaving behind salt and other evaporites to form sedimentary beds. When there is a difference in pressure, such as additional sediment in a particular area, the salt beds – due to the unique ability of salt to behave as a fluid under pressure – form into new structures. Sometimes, these new bodies form subhorizontal or moderately dipping structures over a younger stratigraphic unit, which are called allochthonous salt bodies or salt surface structures.

<span class="mw-page-title-main">Columbus Basin</span>

The Columbus Basin is a foreland basin located off the south eastern coast of Trinidad within the East Venezuela Basin (EVB). Due to the intensive deformation occurring along the Caribbean and South American plates in this region, the basin has a unique structural and stratigraphic relationship. The Columbus Basin has been a prime area for hydrocarbon exploration and production as its structures, sediments and burial history provide ideal conditions for generation and storage of hydrocarbon reserves. The Columbus Basin serves as a depocenter for the Orinoco River delta, where it is infilled with 15 km of fluvio-deltaic sediment. The area has also been extensively deformed by series of north west to southeast normal faults and northeast to southwest trending anticline structures.

<span class="mw-page-title-main">Offshore Indus Basin</span> Basin in offshore Pakistan

The offshore Indus Basin is one of the two basins in offshore Pakistan, the other one being the offshore Makran Basin. The Murray Ridge separates the two basins. The offshore Indus basin is approximately 120 to 140 kilometers wide and has an areal extent of ~20,000 square km.

<span class="mw-page-title-main">Gulf of Mexico basin</span> Oceanic rift basin

The formation of the Gulf of Mexico, an oceanic rift basin located between North America and the Yucatan Block, was preceded by the breakup of the Supercontinent Pangaea in the Late-Triassic, weakening the lithosphere. Rifting between the North and South American plates continued in the Early-Jurassic, approximately 160 million years ago, and formation of the Gulf of Mexico, including subsidence due to crustal thinning, was complete by 140 Ma. Stratigraphy of the basin, which can be split into several regions, includes sediments deposited from the Jurassic through the Holocene, currently totaling a thickness between 15 and 20 kilometers.

The Angola Basin is located along the West African South Atlantic Margin which extends from Cameroon to Angola. It is characterized as a passive margin that began spreading in the south and then continued upwards throughout the basin. This basin formed during the initial breakup of the supercontinent Pangaea during the early Cretaceous, creating the Atlantic Ocean and causing the formation of the Angola, Cape, and Argentine basins. It is often separated into two units: the Lower Congo Basin, which lies in the northern region and the Kwanza Basin which is in the southern part of the Angola margin. The Angola Basin is famous for its "Aptian Salt Basins," a thick layer of evaporites that has influenced topography of the basin since its deposition and acts as an important petroleum reservoir.

<span class="mw-page-title-main">Tarfaya Basin</span>

The Tarfaya Basin is a structural basin located in southern Morocco that extends westward into the Moroccan territorial waters in the Atlantic Ocean. The basin is named for the city of Tarfaya located near the border of Western Sahara, a region governed by the Kingdom of Morocco. The Canary Islands form the western edge of the basin and lie approximately 100 km to the west.

<span class="mw-page-title-main">Geology of Senegal</span>

The geology of Senegal formed beginning more than two billion years ago. The Archean greenschist Birimian rocks common throughout West Africa are the oldest in the country, intruded by Proterozoic granites. Basins formed in the interior during the Paleozoic and filled with sedimentary rocks, including tillite from a glaciation. With the rifting apart of the supercontinent Pangaea in the Mesozoic, the large Senegal Basin filled with thick sequences of marine and terrestrial sediments. Sea levels declined in the Eocene forming large phosphate deposits. Senegal is blanketed in thick layers of terrestrial sediments formed in the Quaternary. The country has extensive natural resources, including gold, diamonds, and iron.

<span class="mw-page-title-main">Salt deformation</span> Change of shape of geological salt bodies submitted to stress

Salt deformation is the change of shape of natural salt bodies in response to forces and mechanisms that controls salt flow. Such deformation can generate large salt structures such as underground salt layers, salt diapirs or salt sheets at the surface. Strictly speaking, salt structures are formed by rock salt that is composed of pure halite (NaCl) crystal. However, most halite in nature appears in impure form, therefore rock salt usually refers to all rocks that composed mainly of halite, sometimes also as a mixture with other evaporites such as gypsum and anhydrite. Earth's salt deformation generally involves such mixed materials.

References

  1. Schreiber, B.C. and Hsü, K.J. (1980) Evaporites. In Developments in Petroleum Geology, Vol. 2 (Ed. G.D. Hobson), pp. 87–138. Elsevier Science, Amsterdam.
  2. 1 2 3 4 5 Hudec, Michael R.; Jackson, Martin P. A. (2007). "Terra infirma: Understanding salt tectonics". Earth-Science Reviews. 82 (1): 1–28. Bibcode:2007ESRv...82....1H. doi:10.1016/j.earscirev.2007.01.001. ISSN   0012-8252.
  3. Dronkert, H. & Remmelts, G. 1996. Influence of salt structures on reservoir rocks in Block L2, Dutch continental shelf. In: Rondeel, H.E., Batjes, D.A.J., Nieuwenhuijs, W.H. (eds): Geology of gas and oil under the Netherlands, Kluwer (Dordrecht): 159–166.
  4. 1 2 3 "What is a Salt Dome? How do they form?". geology.com. Retrieved 2015-12-17.
  5. Schultz-Ela, D.D; Jackson, M.P.A; Vendeville, B.C. (January 12, 1992). "Mechanics of Active Salt Diapirism". Tectonophysics. 228 (3–4). Amsterdam: 275–312. doi:10.1016/0040-1951(93)90345-k.
  6. 1 2 3 4 Drachev, Sergey S. (2014), "Salt Diapirism in the Oceans and Continental Margins", in Harff, Jan; Meschede, Martin; Petersen, Sven; Thiede, Jörn (eds.), Encyclopedia of Marine Geosciences, Dordrecht: Springer Netherlands, pp. 1–8, doi:10.1007/978-94-007-6644-0_93-1, ISBN   978-94-007-6644-0
  7. Thomas R.; Ellison R.A.; Goodenough K.M.; Roberts N.; Allen P. (2015). "Salt domes of the UAE and Oman: Probing eastern Arabia" (PDF). Precambrian Research. 256: 1–16. Bibcode:2015PreR..256....1T. doi:10.1016/j.precamres.2014.10.011.
  8. McCalla C. (2008). "Geosights: The Onion Creek salt diapir, Grand County". Survey Notes. Utah Geological Survey . Retrieved 2019-07-02.
  9. C.Michael Hogan. 2011. Sulfur. Encyclopedia of Earth, eds. A.Jorgensen and C.J.Cleveland, National Council for Science and the environment, Washington DC
Listen to this article (6 minutes)
Sound-icon.svg
This audio file was created from a revision of this article dated 26 July 2019 (2019-07-26), and does not reflect subsequent edits.