Paradox Formation

Last updated
Paradox Formation
Stratigraphic range: Pennsylvanian 313–304  Ma
Paradox Formation at type.jpg
Paradox Formation at its type location at Paradox, Colorado
Type Geological formation
Unit of Hermosa Group
Underlies Honaker Trail Formation
Overlies Pinkerton Trail Formation
Thickness4,380 feet (1,340 m)
Lithology
Primary evaporites
Other sandstone, shale, limestone
Location
Coordinates 38°22′05″N108°57′50″W / 38.368°N 108.964°W / 38.368; -108.964
Region Utah, Colorado
CountryFlag of the United States.svg  United States
Extent150 by 80 miles (240 by 130 km) (evaporite facies)
Type section
Named for Paradox Valley
Named byBaker, Dante, and Reeside
Year defined1933
Usa edcp relief location map.png
Cyan pog.svg
Paradox Formation (the United States)
USA Colorado relief location map.svg
Cyan pog.svg
Paradox Formation (Colorado)

In geology, the Paradox Formation Is a Pennsylvanian age formation which consists of abundant evaporites with lesser interbedded shale, sandstone, and limestone. The evaporites are largely composed of gypsum, anhydrite, and halite. The formation is found mostly in the subsurface, but there are scattered exposures in anticlines in eastern Utah and western Colorado. [1] These surface exposures occur in the Black Mesa, San Juan and Paradox Basins and the formation is found in the subsurface in southwestern Colorado, southeastern Utah, northeastern Arizona and northeastern New Mexico. [2]

Contents

The formation is notable both for its petroleum resources and for its salt tectonics, which are responsible for many distinctive geologic features of the eastern Colorado Plateau. In addition to the anticline valleys, these include the grabens of the Needles District of Canyonlands National Park and the fins and arches of Arches National Park.

Description

The Paradox Formation was deposited in the Paradox Basin, a deep basin formed southwest of the Uncompahgre uplift of the Ancestral Rocky Mountains. The basin experienced rapid subsidence at the same time that sea levels were periodically rising and falling as a result of late Paleozoic glaciation. This produced periodic flooding of the basin (as sea levels rose) followed by evaporation (as sea levels fell.) Some 33 cycles of sea level rise and fall are recorded in the Paradox basin, each producing a characteristic sequence of mineral beds. As sea level rose, anhydrite or gypsum were deposited, followed by dolomite, then black shale at the high stand of the sea. As sea level dropped and the basin was cut off from the open ocean, dolomite was again deposited, then gypsum or anhydrite, then halite (which makes up most of the thickness of the cycle), then potash. Each cycle is separated by an erosional surface marking the low stand of the sea, and in some cases the potash beds were completely eroded away, so that they are not present in all cycles. This evaporite facies of the formation exists mainly in the subsurface, with only scattered surface exposures of highly deformed beds of the less soluble minerals. [3]

Honaker Trail Formation over the shelf facies of the Paradox Formation in the San Juan River canyon Honaker Trail Formation over Paradox Formation (Pennsylvanian; Goosenecks of the San Juan River, Utah, USA) 6 (49103736132).jpg
Honaker Trail Formation over the shelf facies of the Paradox Formation in the San Juan River canyon

To the northeast, near the Uncompahgre uplift, the Paradox Formation abruptly transitions to clastic rock assigned to the undivided Hermosa Group. To the southwest, the basin gradually shallows, and the evaporite beds are replaced by limestone of the carbonate shelf facies of the Paradox Formation. Here each cycle consists of black shale, then carbonate mudstone, then highly fossiliferous silty limestone, then algal mounds, ending with a cap facies of sediments deposited in a very shallow, high-energy environment. This is separated by an erosional surface from the base of the next cycle. The algal mounds are dominated by Ivanovia , a green alga whose calcareous fronds form an excellent reservoir rock for petroleum. The carbonate shelf facies is less than 1,000 feet (300 m) thick but is exposed in the bottom of the San Juan River canyon. [4] [5]

The formation is assigned to the Hermosa Group, [2] of which it is the middle formation. It overlies the Pinkerton Trail Formation and is in turn overlain by the Honaker Trail Formation. Both contacts are conformable. [6]

Salt tectonics

The Paradox Formation is a source of petroleum, with oil fields at Aneth, Desert Creek, North Desert Creek, Squaw Canyon, Bluff, and Dove Creek, among other locations. [7] [8] However, its greatest significance may be through the unusual salt tectonics it causes across the eastern Colorado Plateau. The most striking of these are the salt anticlines. Halite (rock salt) is relatively low in density (with a specific gravity around 2.17) and is ductile, slowly deforming under pressure. The relatively light salt tend to rise towards the surface as salt walls, deforming the overlying beds into anticlines. When a salt wall approaches the surface, it is dissolved and removed by groundwater, causing the center of the anticline to collapse and form a salt anticline valley. Examples of salt anticline valleys arising from the Paradox Formation include Spanish Valley, Lisbon Valley, Paradox Valley, and Gypsum Valley. Further west, the salt walls are located at greater depth, and the salt anticlines have not collapsed and are identifiable only by geologic mapping. [9]

Another feature produced by salt tectonics is the Needles District fault zone in Canyonlands National Park. Here the Colorado River has breached the salt beds of the Paradox Formation in Cataract Canyon, dissolving great quantities of salt and causing the overlying beds on either side of the canyon to slump towards the river. This produces the striking arcuate faults and associated grabens of the Needles District. [9]

The deformation of overlying beds, due to deformation from the movement of underlying salt, is also responsible for the distinctive features of Arches National Park. The deformation of the beds resulted in the development of extensive parallel fractures in the sandstone of the Entrada Formation, and erosion along the fractures produced the fins and arches seen in the park. [10]

History of investigation

The formation was named by A.A. Baker, C.H. Dane, and John B. Reeside, Jr. in 1933 for exposures in the Paradox Valley, found particularly around the town of Paradox, Colorado. Geologists had already noticed the beds of gypsum found in a few exposures in the Paradox Valley and neighboring valleys, and indications of petroleum, natural gas, and potash had been found in wells penetrating these beds. However, the beds lacked age-determinative fossils and were highly deformed, making it difficult to determine their relationship to other formations. Baker, Dane, and Reeside examined well logs from throughout the region and concluded that the evaporite beds filled a subsurface basin some 150 by 80 miles (240 by 130 km) in extent trending northwest to southeast. The beds averaged about 2,000 feet (610 m) thick, though thickness varied greatly due to ductile movement of the evaporites. They also found fossils in well cores that indicated an early Pennsylvanian age for the formation, and concluded that the Paradox beds underlay the Hermosa Formation as then defined. Because surface exposures were few and poor, they described a section for the formation from a well drilled at Schafer dome, about 10 miles southwest of Moab, Utah. [1]

By 1957, the Paradox was recognized as an important petroleum-bearing unit. [7] The next year, Sherman A. Wengerd and Marvin L. Matheny established the stratigraphic framework for the Pennsylvanian formations of the Four Corners region that is now in wide use, with the Hermosa Group consisting of a lower Pinkerton Trail Formation, the middle Paradox Formation, and an upper Honaker Trail Formation. [6]

In 1967, Don L. Baars, J. William Parker, and John Chronic further refined the definition of the Paradox Formation, establishing its age as Atokan to Missourian, and defining a subsurface reference section at depths of 5,420 to 9,600 feet (1,650 to 2,930 m) at a well northeast of Egnar, Colorado. Here the original evaporite beds show little indication of deformation. [11]

Related Research Articles

<span class="mw-page-title-main">Evaporite</span> Water-soluble mineral deposit formed by evaporation from an aqueous solution

An evaporite is a water-soluble sedimentary mineral deposit that results from concentration and crystallization by evaporation from an aqueous solution. There are two types of evaporite deposits: marine, which can also be described as ocean deposits, and non-marine, which are found in standing bodies of water such as lakes. Evaporites are considered sedimentary rocks and are formed by chemical sediments.

<span class="mw-page-title-main">Permian Basin (North America)</span> Large sedimentary basin in the US

The Permian Basin is a large sedimentary basin in the southwestern part of the United States. It is the highest producing oil field in the United States, producing an average of 4.2 million barrels of crude oil per day in 2019. This sedimentary basin is located in western Texas and southeastern New Mexico. It reaches from just south of Lubbock, past Midland and Odessa, south nearly to the Rio Grande River in southern West Central Texas, and extending westward into the southeastern part of New Mexico. It is so named because it has one of the world's thickest deposits of rocks from the Permian geologic period. The greater Permian Basin comprises several component basins; of these, the Midland Basin is the largest, Delaware Basin is the second largest, and Marfa Basin is the smallest. The Permian Basin covers more than 86,000 square miles (220,000 km2), and extends across an area approximately 250 miles (400 km) wide and 300 miles (480 km) long.

<span class="mw-page-title-main">Anhydrite</span> Mineral, anhydrous calcium sulfate

Anhydrite, or anhydrous calcium sulfate, is a mineral with the chemical formula CaSO4. It is in the orthorhombic crystal system, with three directions of perfect cleavage parallel to the three planes of symmetry. It is not isomorphous with the orthorhombic barium (baryte) and strontium (celestine) sulfates, as might be expected from the chemical formulas. Distinctly developed crystals are somewhat rare, the mineral usually presenting the form of cleavage masses. The Mohs hardness is 3.5, and the specific gravity is 2.9. The color is white, sometimes greyish, bluish, or purple. On the best developed of the three cleavages, the lustre is pearly; on other surfaces it is glassy. When exposed to water, anhydrite readily transforms to the more commonly occurring gypsum, (CaSO4·2H2O) by the absorption of water. This transformation is reversible, with gypsum or calcium sulfate hemihydrate forming anhydrite by heating to around 200 °C (400 °F) under normal atmospheric conditions. Anhydrite is commonly associated with calcite, halite, and sulfides such as galena, chalcopyrite, molybdenite, and pyrite in vein deposits.

<span class="mw-page-title-main">Geology of the Canyonlands area</span>

The exposed geology of the Canyonlands area is complex and diverse; 12 formations are exposed in Canyonlands National Park that range in age from Pennsylvanian to Cretaceous. The oldest and perhaps most interesting was created from evaporites deposited from evaporating seawater. Various fossil-rich limestones, sandstones, and shales were deposited by advancing and retreating warm shallow seas through much of the remaining Paleozoic.

<span class="mw-page-title-main">Cutler Formation</span> Geologic formation in the Four Corners, US

The Cutler Formation or Cutler Group is a rock unit that is exposed across the U.S. states of Arizona, northwest New Mexico, southeast Utah and southwest Colorado. It was laid down in the Early Permian during the Wolfcampian epoch.

<span class="mw-page-title-main">Moenkopi Formation</span> Geologic formation in the southwestern United States

The Moenkopi Formation is a geological formation that is spread across the U.S. states of New Mexico, northern Arizona, Nevada, southeastern California, eastern Utah and western Colorado. This unit is considered to be a group in Arizona. Part of the Colorado Plateau and Basin and Range, this red sandstone was laid down in the Lower Triassic and possibly part of the Middle Triassic, around 240 million years ago.

Caprock or cap rock is a more resistant rock type overlying a less resistant rock type, analogous to an upper crust on a cake that is harder than the underlying layer.

<span class="mw-page-title-main">Paradox Basin</span> Sedimentary basin in the southwestern United States

The Paradox Basin is an asymmetric foreland basin located mostly in southeast Utah and southwest Colorado, but extending into northeast Arizona and northwest New Mexico. The basin is a large elongate northwest to southeast oriented depression formed during the late Paleozoic Era. The basin is bordered on the east by the tectonically uplifted Uncompahgre Plateau, on the northwest by the San Rafael Swell and extends partway into the Monument Uplift to the west.

<span class="mw-page-title-main">Cedar Mesa Sandstone</span>

Cedar Mesa Sandstone is a sandstone member of the Cutler Formation, found in southeast Utah, southwest Colorado, northwest New Mexico, and northeast Arizona.

<span class="mw-page-title-main">Mancos Shale</span> Late Cretaceous geologic formation of the Western United States

The Mancos Shale or Mancos Group is a Late Cretaceous geologic formation of the Western United States.

<span class="mw-page-title-main">San Andres Formation, United States</span> Geologic formation in New Mexico and Texas

The San Andres Formation is a geologic formation found in New Mexico and Texas. It contains fossils characteristic of the late Leonardian (Kungurian) Age) of the Permian Period.

<span class="mw-page-title-main">Burro Canyon Formation</span> Geologic formation in the southwestern US

The Burro Canyon Formation is an Early Cretaceous Period sedimentary geologic formation, found in western Colorado, the Chama Basin and eastern San Juan Basin of northern New Mexico, and in eastern Utah, US.

<span class="mw-page-title-main">Prairie Evaporite Formation</span> Geologic formation of Givetian age

The Prairie Evaporite Formation, also known as the Prairie Formation, is a geologic formation of Middle Devonian (Givetian) age that consists primarily of halite and other evaporite minerals. It is present beneath the plains of northern and eastern Alberta, southern Saskatchewan and southwestern Manitoba in Canada, and it extends into northwestern North Dakota and northeastern Montana in the United States.

The Grayburg Formation is a geologic formation in west Texas and southern New Mexico. It preserves fossils dating back to the Guadalupian Epoch of the Permian Period.

The Castile Formation is a geologic formation in west Texas and southeastern New Mexico, United States. It was deposited in the Ochoan Stage of the Permian period.

The Salado Formation is a geologic formation in west Texas and southeastern New Mexico. It was deposited in the Ochoan Stage of the Permian period.

<span class="mw-page-title-main">Elbert Formation</span>

The Elbert Formation is a geologic formation that crops out in the San Juan Mountains of southwestern Colorado. The formation contains fossils indicating it is upper Devonian in age.

The Molas Formation is a geologic formation that is found in the Four Corners region of the United States. Its age is poorly constrained but is thought to be Namurian.

The Pinkerton Trail Formation is a geologic formation that is found in the Four Corners region of the United States. It contains fossils characteristic of the Atokan and Desmoinesian Ages of the Pennsylvanian.

<span class="mw-page-title-main">Palo Duro basin</span> Geologic province in Texas, New Mexico, and Oklahoma, US

The Palo Duro basin is a geologic province and structural basin in Texas, New Mexico, and Oklahoma, US.

References

  1. 1 2 Baker, A.A.; Dane, C.H.; Reeside, John B. Jr. (1933). "Paradox Formation of Eastern Utah and Western Colorado". AAPG Bulletin. 17. doi:10.1306/3D932B92-16B1-11D7-8645000102C1865D.
  2. 1 2 "Geology of National Parks, Paradox Formation". Archived from the original on 2008-05-13. Retrieved 2012-01-07.
  3. Fillmore 2010, pp. 44–48.
  4. Wengerd, Sherman A. (1963). "Stratigraphic Section at Honaker Trail, San Juan Canyon San Juan County, Utah". Shelf Carbonates of the Paradox Basin, Fourth Field Conference. American Association of Petroleum Geologists. Retrieved 2 June 2021.
  5. Fillmore 2010, pp. 50–58.
  6. 1 2 Wengerd, Sherman A.; Matheny, Marvin L. (1958). "Pennsylvanian System of Four Corners Region". AAPG Bulletin. 42 (9): 2048–2106. doi:10.1306/0BDA5BA9-16BD-11D7-8645000102C1865D.
  7. 1 2 Herman, George; Barkell, Clifford A. (1957). "Pennsylvanian Stratigraphy and Productive Zones, Paradox Salt Basin". AAPG Bulletin. 41 (5): 861–881. doi:10.1306/0BDA587C-16BD-11D7-8645000102C1865D.
  8. Fillmore, Robert (2010). Geological evolution of the Colorado Plateau of eastern Utah and western Colorado, including the San Juan River, Natural Bridges, Canyonlands, Arches, and the Book Cliffs. Salt Lake City: University of Utah Press. pp. 59–61. ISBN   9781607810049.
  9. 1 2 Fillmore 2010, pp. 72–88.
  10. Fillmore 2010, pp. 352–354.
  11. Baars, D.L.; Parker, J.W.; Chronic, J. (1967). "Revised stratigraphic nomenclature of Pennsylvanian System, Paradox basin". AAPG Bulletin. 51 (3): 393–403. Retrieved 1 June 2021.