Soil conservation is the prevention of loss of the topmost layer of the soil from erosion or prevention of reduced fertility caused by over usage, acidification, salinization or other chemical soil contamination.
Slash-and-burn and other unsustainable methods of subsistence farming are practiced in some lesser developed areas. A consequence of deforestation is typically large-scale erosion, loss of soil nutrients and sometimes total desertification. Techniques for improved soil conservation include crop rotation, cover crops, conservation tillage and planted windbreaks, affect both erosion and fertility. When plants die, they decay and become part of the soil. Code 330 defines standard methods recommended by the U.S. Natural Resources Conservation Service. Farmers have practiced soil conservation for millennia. In Europe, policies such as the Common Agricultural Policy are targeting the application of best management practices such as reduced tillage, winter cover crops, [1] plant residues and grass margins in order to better address soil conservation. Political and economic action is further required to solve the erosion problem. A simple governance hurdle concerns how we value the land and this can be changed by cultural adaptation. [2] Soil carbon is a carbon sink, playing a role in climate change mitigation. [3]
Contour ploughing orients furrows following the contour lines of the farmed area. Furrows move left and right to maintain a constant altitude, which reduces runoff. Contour ploughing was practiced by the ancient Phoenicians for slopes between two and ten percent. [4] Contour ploughing can increase crop yields from 10 to 50 percent, partially as a result of greater soil retention. [5]
Terracing is the practice of creating nearly level areas in a hillside area. The terraces form a series of steps each at a higher level than the previous. Terraces are protected from erosion by other soil barriers. Terraced farming is more common on small farms.
Keyline design is the enhancement of contour farming, where the total watershed properties are taken into account in forming the contour lines.
Tree, shrubs and ground-cover are effective perimeter treatment for soil erosion prevention, by impeding surface flows. A special form of this perimeter or inter-row treatment is the use of a "grass way" that both channels and dissipates runoff through surface friction, impeding surface runoff and encouraging infiltration of the slowed surface water. [6]
Windbreaks are sufficiently dense rows of trees at the windward exposure of an agricultural field subject to wind erosion. [7] Evergreen species provide year-round protection; however, as long as foliage is present in the seasons of bare soil surfaces, the effect of deciduous trees may be adequate.
Cover crops such as nitrogen-fixing legumes, white turnips, radishes and other species are rotated with cash crops to blanket the soil year-round and act as green manure that replenishes nitrogen and other critical nutrients. Cover crops also help suppress weeds. [8]
Soil-conservation farming involves no-till farming, "green manures" and other soil-enhancing practices which make it hard for the soils to be equalized. Such farming methods attempt to mimic the biology of barren lands. They can revive damaged soil, minimize erosion, encourage plant growth, eliminate the use of nitrogen fertilizer or fungicide, produce above-average yields and protect crops during droughts or flooding. The result is less labor and lower costs that increase farmers’ profits. No-till farming and cover crops act as sinks for nitrogen and other nutrients. This increases the amount of soil organic matter. [8]
Repeated plowing/tilling degrades soil, killing its beneficial fungi and earthworms. Once damaged, soil may take multiple seasons to fully recover, even in optimal circumstances. [8]
Critics argue that no-till and related methods are impractical and too expensive for many growers, partly because it requires new equipment. They cite advantages for conventional tilling depending on the geography, crops and soil conditions. Some farmers claimed that no-till complicates pest control, delays planting and that post-harvest residues, especially for corn, are hard to manage. [8]
The use of pesticides can contaminate the soil, and nearby vegetation and water sources for a long time. They affect soil structure and (biotic and abiotic) composition. [9] [10] Differentiated taxation schemes are among the options investigated in the academic literature to reducing their use. [11]
Alternatives to pesticides are available and include methods of cultivation, use of biological pest controls (such as pheromones and microbial pesticides), genetic engineering (mostly of crops), and methods of interfering with insect breeding. [12] Application of composted yard waste has also been used as a way of controlling pests. [13]
These methods are becoming increasingly popular and often are safer than traditional chemical pesticides. In addition, EPA is registering reduced-risk pesticides in increasing numbers.[ citation needed ]
Cultivation practices include polyculture (growing multiple types of plants), crop rotation, planting crops in areas where the pests that damage them do not live, timing planting according to when pests will be least problematic, and use of trap crops that attract pests away from the real crop. [14] Trap crops have successfully controlled pests in some commercial agricultural systems while reducing pesticide usage. [15] In other systems, trap crops can fail to reduce pest densities at a commercial scale, even when the trap crop works in controlled experiments. [16]
Release of other organisms that fight the pest is another example of an alternative to pesticide use. These organisms can include natural predators or parasites of the pests. [14] Biological pesticides based on entomopathogenic fungi, bacteria and viruses causing disease in the pest species can also be used. [14]
Interfering with insects' reproduction can be accomplished by sterilizing males of the target species and releasing them, so that they mate with females but do not produce offspring. [14] This technique was first used on the screwworm fly in 1958 and has since been used with the medfly, the tsetse fly, [17] and the gypsy moth. [18] This is a costly and slow approach that only works on some types of insects. [14]
Salinity in soil is caused by irrigating with salty water. Water then evaporates from the soil leaving the salt behind. Salt breaks down the soil structure, causing infertility and reduced growth.
The ions responsible for salination are: sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+) and chlorine (Cl−). Salinity is estimated to affect about one third of the earth's arable land. [20] Soil salinity adversely affects crop metabolism and erosion usually follows.
Salinity occurs on drylands from overirrigation and in areas with shallow saline water tables. Over-irrigation deposits salts in upper soil layers as a byproduct of soil infiltration; irrigation merely increases the rate of salt deposition. The best-known case of shallow saline water table capillary action occurred in Egypt after the 1970 construction of the Aswan Dam. The change in the groundwater level led to high salt concentrations in the water table. The continuous high level of the water table led to soil salination.
Use of humic acids may prevent excess salination, especially given excessive irrigation.[ citation needed ] Humic acids can fix both anions and cations and eliminate them from root zones.[ citation needed ]
Planting species that can tolerate saline conditions can be used to lower water tables and thus reduce the rate of capillary and evaporative enrichment of surface salts. Salt-tolerant plants include saltbush, a plant found in much of North America and in the Mediterranean regions of Europe.
When worms excrete feces in the form of casts, a balanced selection of minerals and plant nutrients is made into a form accessible for root uptake. Earthworm casts are five times richer in available nitrogen, seven times richer in available phosphates and eleven times richer in available potash than the surrounding upper 150 millimetres (5.9 in) of soil. The weight of casts produced may be greater than 4.5 kg per worm per year. By burrowing, the earthworm improves soil porosity, creating channels that enhance the processes of aeration and drainage. [21]
Other important soil organisms include nematodes, mycorrhiza and bacteria. A quarter of all the animal species live underground. According to the 2020 Food and Agriculture Organization’s report "State of knowledge of soil biodiversity – Status, challenges and potentialities", there are major gaps in knowledge about biodiversity in soils. [22] [23]
Degraded soil requires synthetic fertilizer to produce high yields. Lacking structure increases erosion and carries nitrogen and other pollutants into rivers and streams. [8]
Each one percent increase in soil organic matter helps soil hold 20,000 gallons more water per acre. [8]
To allow plants full realization of their phytonutrient potential, active mineralization of the soil is sometimes undertaken. This can involve adding crushed rock or chemical soil supplements. In either case the purpose is to combat mineral depletion. A broad range of minerals can be used, including common substances such as phosphorus and more exotic substances such as zinc and selenium. Extensive research examines the phase transitions of minerals in soil with aqueous contact. [24]
Flooding can bring significant sediments to an alluvial plain. While this effect may not be desirable if floods endanger life or if the sediment originates from productive land, this process of addition to a floodplain is a natural process that can rejuvenate soil chemistry through mineralization.
Crop rotation is the practice of growing a series of different types of crops in the same area across a sequence of growing seasons. It reduces reliance on one set of nutrients, pest and weed pressure, and the probability of developing resistant pests and weeds.
Intensive agriculture, also known as intensive farming, conventional, or industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital and labour, and higher crop yields per unit land area.
Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business process and farming practices. Agriculture has an enormous environmental footprint, playing a significant role in causing climate change, water scarcity, water pollution, land degradation, deforestation and other processes; it is simultaneously causing environmental changes and being impacted by these changes. Sustainable agriculture consists of environment friendly methods of farming that allow the production of crops or livestock without damage to human or natural systems. It involves preventing adverse effects to soil, water, biodiversity, surrounding or downstream resources—as well as to those working or living on the farm or in neighboring areas. Elements of sustainable agriculture can include permaculture, agroforestry, mixed farming, multiple cropping, and crop rotation.
In agriculture, cover crops are plants that are planted to cover the soil rather than for the purpose of being harvested. Cover crops manage soil erosion, soil fertility, soil quality, water, weeds, pests, diseases, biodiversity and wildlife in an agroecosystem—an ecological system managed and shaped by humans. Cover crops may be an off-season crop planted after harvesting the cash crop. Cover crops are nurse crops in that they increase the survival of the main crop being harvested, and are often grown over winter. In the United States, cover cropping may cost as much as $35 per acre.
Topsoil is the upper layer of soil. It has the highest concentration of organic matter and microorganisms and is where most of the Earth's biological soil activity occurs.
No-till farming is an agricultural technique for growing crops or pasture without disturbing the soil through tillage. No-till farming decreases the amount of soil erosion tillage causes in certain soils, especially in sandy and dry soils on sloping terrain. Other possible benefits include an increase in the amount of water that infiltrates into the soil, soil retention of organic matter, and nutrient cycling. These methods may increase the amount and variety of life in and on the soil. While conventional no-tillage systems use herbicides to control weeds, organic systems use a combination of strategies, such as planting cover crops as mulch to suppress weeds.
Nutrient management is the science and practice directed to link soil, crop, weather, and hydrologic factors with cultural, irrigation, and soil and water conservation practices to achieve optimal nutrient use efficiency, crop yields, crop quality, and economic returns, while reducing off-site transport of nutrients (fertilizer) that may impact the environment. It involves matching a specific field soil, climate, and crop management conditions to rate, source, timing, and place of nutrient application.
Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality. It also refers to the soil's ability to supply plant/crop nutrients in the right quantities and qualities over a sustained period of time.A fertile soil has the following properties:
Agricultural wastewater treatment is a farm management agenda for controlling pollution from confined animal operations and from surface runoff that may be contaminated by chemicals in fertilizer, pesticides, animal slurry, crop residues or irrigation water. Agricultural wastewater treatment is required for continuous confined animal operations like milk and egg production. It may be performed in plants using mechanized treatment units similar to those used for industrial wastewater. Where land is available for ponds, settling basins and facultative lagoons may have lower operational costs for seasonal use conditions from breeding or harvest cycles. Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes.
Organic horticulture is the science and art of growing fruits, vegetables, flowers, or ornamental plants by following the essential principles of organic agriculture in soil building and conservation, pest management, and heirloom variety preservation.
In agriculture, a living mulch is a cover crop interplanted or undersown with a main crop, and intended to serve the purposes of a mulch, such as weed suppression and regulation of soil temperature. Living mulches grow for a long time with the main crops, whereas cover crops are incorporated into the soil or killed with herbicides.
Nonpoint source (NPS) pollution refers to diffuse contamination of water or air that does not originate from a single discrete source. This type of pollution is often the cumulative effect of small amounts of contaminants gathered from a large area. It is in contrast to point source pollution which results from a single source. Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage, or hydrological modification where tracing pollution back to a single source is difficult. Nonpoint source water pollution affects a water body from sources such as polluted runoff from agricultural areas draining into a river, or wind-borne debris blowing out to sea. Nonpoint source air pollution affects air quality, from sources such as smokestacks or car tailpipes. Although these pollutants have originated from a point source, the long-range transport ability and multiple sources of the pollutant make it a nonpoint source of pollution; if the discharges were to occur to a body of water or into the atmosphere at a single location, the pollution would be single-point.
Surface runoff is the flow of water occurring on the ground surface when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or man-made processes. Surface runoff is a major component of the water cycle. It is the primary agent of soil erosion by water. The land area producing runoff that drains to a common point is called a drainage basin.
Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.
A buffer strip is an area of land maintained in permanent vegetation that helps to control air quality, soil quality, and water quality, along with other environmental problems, dealing primarily on land that is used in agriculture. Buffer strips trap sediment, and enhance filtration of nutrients and pesticides by slowing down surface runoff that could enter the local surface waters. The root systems of the planted vegetation in these buffers hold soil particles together which alleviate the soil of wind erosion and stabilize stream banks providing protection against substantial erosion and landslides. Farmers can also use buffer strips to square up existing crop fields to provide safety for equipment while also farming more efficiently.
The environmental impact of agriculture is the effect that different farming practices have on the ecosystems around them, and how those effects can be traced back to those practices. The environmental impact of agriculture varies widely based on practices employed by farmers and by the scale of practice. Farming communities that try to reduce environmental impacts through modifying their practices will adopt sustainable agriculture practices. The negative impact of agriculture is an old issue that remains a concern even as experts design innovative means to reduce destruction and enhance eco-efficiency. Though some pastoralism is environmentally positive, modern animal agriculture practices tend to be more environmentally destructive than agricultural practices focused on fruits, vegetables and other biomass. The emissions of ammonia from cattle waste continue to raise concerns over environmental pollution.
Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.
Soil management is the application of operations, practices, and treatments to protect soil and enhance its performance. It includes soil conservation, soil amendment, and optimal soil health. In agriculture, some amount of soil management is needed both in nonorganic and organic types to prevent agricultural land from becoming poorly productive over decades. Organic farming in particular emphasizes optimal soil management, because it uses soil health as the exclusive or nearly exclusive source of its fertilization and pest control.
Soil compaction, also known as soil structure degradation, is the increase of bulk density or decrease in porosity of soil due to externally or internally applied loads. Compaction can adversely affect nearly all physical, chemical and biological properties and functions of soil. Together with soil erosion, it is regarded as the "costliest and most serious environmental problem caused by conventional agriculture."
Soil regeneration, as a particular form of ecological regeneration within the field of restoration ecology, is creating new soil and rejuvenating soil health by: minimizing the loss of topsoil, retaining more carbon than is depleted, boosting biodiversity, and maintaining proper water and nutrient cycling. This has many benefits, such as: soil sequestration of carbon in response to a growing threat of climate change, a reduced risk of soil erosion, and increased overall soil resilience.
{{cite book}}
: CS1 maint: multiple names: authors list (link)