Quicksand

Last updated
Quicksand and a warning sign about it at a gravel quarry in England Quicksand warning.jpg
Quicksand and a warning sign about it at a gravel quarry in England
Quicksand on the Thames Quicksand (4596511338).jpg
Quicksand on the Thames

Quicksand (also known as sinking sand) is a colloid consisting of fine granular material (such as sand, silt or clay) and water. It forms in saturated loose sand when the sand is suddenly agitated. When water in the sand cannot escape, it creates a liquefied soil that loses strength and cannot support weight. Quicksand can form in standing water or in upward flowing water (as from an artesian spring). In the case of upward-flowing water, forces oppose the force of gravity and suspend the soil particle.

Contents

The cushioning of water gives quicksand, and other liquefied sediments, a spongy, fluid-like texture. Objects in liquefied sand sink to the level at which the weight of the object is equal to the weight of the displaced soil/water mix and the submerged object floats due to its buoyancy.

Soil liquefaction may occur in partially saturated soil when it is shaken by an earthquake or similar forces. The movement combined with an increase in pore pressure (of groundwater) leads to the loss of particle cohesion, causing buildings or other objects on that surface to sink.

Properties

A group of hikers encountering quicksand on the banks of the Paria River, Utah Stuck in Quicksand (13944309974).jpg
A group of hikers encountering quicksand on the banks of the Paria River, Utah
Quicksand warning sign near Lower King Bridge, Western Australia Quicksandwarning.JPG
Quicksand warning sign near Lower King Bridge, Western Australia

Quicksand is a shear thinning non-Newtonian fluid: when undisturbed, it often appears to be solid ("gel" form), but a less than 1% change in the stress on the quicksand will cause a sudden decrease in its viscosity ("sol" form). After an initial disturbance—such as a person attempting to walk on it—the water and sand in the quicksand separate and dense regions of sand sediment form; it is because of the formation of these high volume fraction regions that the viscosity of the quicksand seems to decrease suddenly. Someone stepping on it will start to sink. To move within the quicksand, a person or object must apply sufficient pressure on the compacted sand to re-introduce enough water to liquefy it. The forces required to do this are quite large: to remove a foot from quicksand at a speed of 1 cm/s would require the same amount of force as that needed to lift a car. [1]

It is impossible for a human to sink entirely into quicksand, [2] due to the higher density of the fluid. Quicksand has a density of about 2 grams per cubic centimeter, whereas the density of the human body is only about 1 gram per cubic centimeter. At that level of density, sinking beyond about waist height in quicksand is impossible. Even objects with a higher density than quicksand will float on it if stationary. Aluminium, for example, has a density of about 2.7 grams per cubic centimeter, but a piece of aluminium will float on top of quicksand until motion causes the sand to liquefy. [3]

Continued or panicked movement, however, may cause a person to sink further in the quicksand. Since this increasingly impairs movement, it can lead to a situation where other factors such as exposure (i.e., sun stroke, dehydration and hypothermia), drowning in a rising tide or attacks by predatory or otherwise aggressive animals may harm a trapped person. [4]

Quicksand may be escaped by slow movement of the legs in order to increase viscosity of the fluid, and rotation of the body so as to float in the supine position (lying horizontally with the face and torso facing up). [3]

In literature

The quicksands were of great extent at low water, and had an infamous reputation in the country. Close in shore, between the islet and the promontory, it was said that they would swallow a man in four minutes and a half; but there may have been little ground for this precision.

Quicksand is a trope of adventure fiction, particularly in film, where it is typically and unrealistically depicted with a suction effect that causes anyone or anything that walks into it to sink until fully submerged and risk drowning. This has led to the common misconception that humans can be completely immersed and drown in quicksand, which is impossible. [5] According to a 2010 article by Slate , this gimmick had its heyday in the 1960s, when almost 3% of all films showed characters sinking in clay, mud, or sand. [6]

See also

Related Research Articles

Density is a substance's mass per unit of volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume: where ρ is the density, m is the mass, and V is the volume. In some cases, density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight.

<span class="mw-page-title-main">Convection</span> Fluid flow that occurs due to heterogeneous fluid properties and body forces

Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

A non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, that is, it has variable viscosity dependent on stress. In particular, the viscosity of non-Newtonian fluids can change when subjected to force. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid. Many salt solutions and molten polymers are non-Newtonian fluids, as are many commonly found substances such as custard, toothpaste, starch suspensions, corn starch, paint, blood, melted butter, and shampoo.

In materials science, liquefaction is a process that generates a liquid from a solid or a gas or that generates a non-liquid phase which behaves in accordance with fluid dynamics. It occurs both naturally and artificially. As an example of the latter, a "major commercial application of liquefaction is the liquefaction of air to allow separation of the constituents, such as oxygen, nitrogen, and the noble gases." Another is the conversion of solid coal into a liquid form usable as a substitute for liquid fuels.

<span class="mw-page-title-main">Buoyancy</span> Upward force that opposes the weight of an object immersed in fluid

Buoyancy, or upthrust is a net upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus, the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid.

Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.

Diving physics, or the physics of underwater diving is the basic aspects of physics which describe the effects of the underwater environment on the underwater diver and their equipment, and the effects of blending, compressing, and storing breathing gas mixtures, and supplying them for use at ambient pressure. These effects are mostly consequences of immersion in water, the hydrostatic pressure of depth and the effects of pressure and temperature on breathing gases. An understanding of the physics behind is useful when considering the physiological effects of diving, breathing gas planning and management, diver buoyancy control and trim, and the hazards and risks of diving.

<span class="mw-page-title-main">Soil liquefaction</span> Soil material that is ordinarily a solid behaving like a liquid

Soil liquefaction occurs when a cohesionless saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress such as shaking during an earthquake or other sudden change in stress condition, in which material that is ordinarily a solid behaves like a liquid. In soil mechanics, the term "liquefied" was first used by Allen Hazen in reference to the 1918 failure of the Calaveras Dam in California. He described the mechanism of flow liquefaction of the embankment dam as:

If the pressure of the water in the pores is great enough to carry all the load, it will have the effect of holding the particles apart and of producing a condition that is practically equivalent to that of quicksand... the initial movement of some part of the material might result in accumulating pressure, first on one point, and then on another, successively, as the early points of concentration were liquefied.

<span class="mw-page-title-main">Granular convection</span> Movement in granular material

Granular convection is a phenomenon where granular material subjected to shaking or vibration will exhibit circulation patterns similar to types of fluid convection. It is sometimes called the Brazil nut effect, when the largest of irregularly shaped particles end up on the surface of a granular material containing a mixture of variously sized objects. This name derives from the example of a typical container of mixed nuts, in which the largest will be Brazil nuts. The phenomenon is also known as the muesli effect since it is seen in packets of breakfast cereal containing particles of different sizes but similar density, such as muesli mix.

<span class="mw-page-title-main">Displacement (fluid)</span> Fluid displaced when an object is immersed in it

In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the fluid displaced can then be measured, and from this, the volume of the immersed object can be deduced: the volume of the immersed object will be exactly equal to the volume of the displaced fluid.

The specific weight, also known as the unit weight, is a volume-specific quantity defined as the weight W divided by the volume V of a material: Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m3), with base units of kg ⋅ m-2 ⋅ s-2. A commonly used value is the specific weight of water on Earth at 4 °C (39 °F), which is 9.807 kilonewtons per cubic metre or 62.43 pounds-force per cubic foot.

Dry quicksand is loose sand whose bulk density is reduced by blowing air through it and which yields easily to weight or pressure. It acts similarly to normal quicksand, but it does not contain any water and does not operate on the same principle. Dry quicksand can also be a resulting phenomenon of contractive dilatancy.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, and hydrology.

Paleoliquefaction is any liquefaction features attributed to seismic events occurring before measurements or written records were kept of earthquakes. The study of these features can reveal a great deal about the seismicity of regions where large earthquakes happen infrequently. This is a subset of the broader field of paleoseismology.

<span class="mw-page-title-main">Effective stress</span>

The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body provides the same strain or strength behaviour which is observed at ≠ 0. In the case of granular media it can be viewed as a force that keeps a collection of particles rigid. Usually this applies to sand, soil, or gravel, as well as every kind of rock and several other porous materials such as concrete, metal powders, biological tissues etc. The usefulness of an appropriate ESP formulation consists in allowing to assess the behaviour of a porous body for whatever pore pressure value on the basis of experiments involving dry samples.

<span class="mw-page-title-main">Debris flow</span> Geological phenomenon

Debris flows are geological phenomena in which water-laden masses of soil and fragmented rock flow down mountainsides, funnel into stream channels, entrain objects in their paths, and form thick, muddy deposits on valley floors. They generally have bulk densities comparable to those of rock avalanches and other types of landslides, but owing to widespread sediment liquefaction caused by high pore-fluid pressures, they can flow almost as fluidly as water. Debris flows descending steep channels commonly attain speeds that surpass 10 m/s (36 km/h), although some large flows can reach speeds that are much greater. Debris flows with volumes ranging up to about 100,000 cubic meters occur frequently in mountainous regions worldwide. The largest prehistoric flows have had volumes exceeding 1 billion cubic meters. As a result of their high sediment concentrations and mobility, debris flows can be very destructive.

<span class="mw-page-title-main">Neutral buoyancy</span> Equilibrium between buoyancy and weight of an immersed object

Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink or rise. An object that has neutral buoyancy will neither sink nor rise.

<span class="mw-page-title-main">Sediment gravity flow</span> Sediment transport mechanism

A sediment gravity flow is one of several types of sediment transport mechanisms, of which most geologists recognize four principal processes. These flows are differentiated by their dominant sediment support mechanisms, which can be difficult to distinguish as flows can be in transition from one type to the next as they evolve downslope.

<span class="mw-page-title-main">Liquefied flow</span>

Liquefied flows are types of sediment-gravity flows in which grains within the flow are kept in suspension by the upward movement of fluid. They form in granular substances where the concentration of suspended mud is too low to develop cohesive forces within the flow. As grains at the base of the suspension settle out, fluid that is displaced upward by the settling generates pore fluid pressures that can help suspend grains in the upper part of the flow. Application of an external pressure to the suspension will initiate flow. This external pressure can be applied by a seismic shock, which may turn transform loose sand into a highly viscous suspension as in quicksand. Generally as soon as the flow begins to move, fluid turbulence results and the flow rapidly evolves into a turbidity current. Flows and suspensions are said to be liquefied when the grains settle downward through the fluid and displace the fluid upwards. By contrast, flows and suspensions are said to fluidized when the fluid moves upward through the grains, thereby temporarily suspending them. Most flows are liquefied, and many references to fluidized sediment gravity flows are in fact incorrect and actually refer to liquified flows. Because fluid is displaced upward in these types of flows, dewatering features such as dish structures, pillars, pipes and dikes are common.

<span class="mw-page-title-main">Liquefied natural gas terminal</span> Facility for processing shipments of the fossil fuel

A liquefied natural gas terminal is a facility for managing the import and/or export of liquefied natural gas (LNG). It comprises equipment for loading and unloading of LNG cargo to/from ocean-going tankers, for transfer across the site, liquefaction, re-gasification, processing, storage, pumping, compression, and metering of LNG. LNG as a liquid is the most efficient way to transport natural gas over long distances, usually by sea.

References

  1. Khaldoun, A., E. Eiser, G. H. Wegdam, and Daniel Bonn. 2005. "Rheology: Liquefaction of quicksand under stress." Nature 437 (29 Sept.): 635. doi : 10.1038/437635a
  2. "Will Quicksand Really Kill You?". The Science Explorer. Retrieved 2020-04-08.
  3. 1 2 Bakalar, Nicholas (September 28, 2005). "Quicksand Science: Why It Traps, How to Escape". National Geographic News. Archived from the original on February 21, 2021. Retrieved October 9, 2011.
  4. Discovery Channel. MythBusters . Season 2. "Killer Quicksand." October 20, 2004.
  5. Reaney, Patricia (29 September 2005). "Quicksand myth exposed". www.abc.net.au. Reuters. Retrieved 2020-04-08.
  6. Engber, Daniel (23 August 2010). "Terra Infirma: The rise and fall of quicksand". Slate. Retrieved 23 August 2010.