Parent material

Last updated

Parent material is the underlying geological material (generally bedrock or a superficial or drift deposit) in which soil horizons form. Soils typically inherit a great deal of structure and minerals from their parent material, and, as such, are often classified based upon their contents of consolidated or unconsolidated mineral material that has undergone some degree of physical or chemical weathering and the mode by which the materials were most recently transported.

Contents

Consolidated

Parent materials that are predominantly composed of consolidated rock are termed residual parent material. The consolidated rocks consist of igneous, sedimentary, and metamorphic rock, etc. [1]

Residual

Soil developed in residual parent material is that which forms in consolidated geologic material. [1] [2]

Unconsolidated

This parent material is loosely arranged, particles are not cemented together, and not stratified. This parent material is classified by its last means of transport. For example, Material that was transported to a location by glacier, then deposited elsewhere by streams, is classified as stream-transported parent material, or glacial fluvial parent material.

Ice transported

Glacial till (Morrainal)

The material dragged with a moving ice sheet. Because it is not transported with liquid water, the material is not sorted by size. There are two kinds of glacial till:

  1. Basal till - carried at the base of the glacier and laid underneath it. This till is typically very compacted and does not allow for quick water infiltration.
  2. Ablation till - carried on or in the glacier and is laid down as the glacier melts. This till is typically less compacted than basal till. [ citation needed ]

Glacio-lacustrine

Parent material that is created from the sediments coming into lakes that come from glaciers. The lakes are typically ice margin lakes or other types formed from glacial erosion or deposition. The bedload of the rivers, containing the larger rocks and stones is deposited near the lake edge, while the suspended sediments are settle out all over the lake bed.

Glacio-fluvial

Consist of boulders, gravel, sand, silt and clay from ice sheets or glaciers. They are transported, sorted and deposited by streams of water. The deposits are formed beside, below or downstream from the ice.

Glacio-marine

These sediments are created when sediments have been transported to the oceans by glaciers or icebergs. They may contain large boulders, transported by and dropped from icebergs, in the midst of fine-grained sediments.

Water transported

Within water transported parent material there are several important types.

Alluvium

Parent material transported by streams of which there are three main types. Floodplains are the parts of river valleys that are covered with water during floods. Due to their seasonal nature, floods create stratified layers in which larger particles tend to settle nearer the channel and smaller particles settle nearer the edges of the flooding area. [1] Alluvial fans are sedimentary areas formed by narrow valley streams that suddenly drop to lowlands and widen dramatically. Sedimentary in these types of deposits tend to be larger closer to the uplands and finer near the edges of the fan. [1] Delta deposits, the third of type of alluvium, are finer sediments that are discharged from streams into lakes and eventually settle near the mouth of the river. [1]

Lacustrine

Parent material deposited by a lake. Beach ridges may be present where ancient lakes once washed up sand. Lacustrine material is well sorted and fine-textured, having finer silts and clays. Soils formed from lacustrine parent material have low permeability in part because of this high clay content.

Marine

Ocean deposited parent materials, called marine sediments, are collections of material that have been carried by rivers and streams to the ocean and eventually sink to the bottom. Such materials can vary in texture. [1]

Gravity transported

Colluvium or colluvial debris is the collection of large rock fragments that have traveled downslope by gravity. [1]

Wind transported

Parent materials can also be transported by wind, there are three important types.

Loess

Silt sized sediments transported by the wind.

Aeolian

Sand sized particles transported by the wind typically as dunes.

Volcanic tephra

The most common parent material coming from volcanoes is volcanic ash carried away by the wind and settling different distances from the volcano.[ citation needed ]

Organic

Organic deposits (or cumulose deposits) are developed in place from plant residue (for example sphagnum moss) that has typically been preserved by a high water table, or potentially due to another factor that slows decomposition.

Climate and weathering

Climate is generally considered the most important factor influencing physical and chemical weathering processes. [ citation needed ]

Physical weathering is especially important during the early stages of soil development. Rock can be disintegrated by changes in temperature which produces differential expansion and contraction. Changes in temperature can also cause water to freeze. The forces produced by water freezing can be as great as 2.1 × 105 kPa, which can split rocks apart, wedge rocks upward in the soil, and heave and churn soil material.

Chemical weathering: the principal agent is percolating rainwater charged with carbon dioxide from the atmosphere. Parent material becomes hydrolyzed by the acidic solution to produce minerals and to release cations.

See also

Related Research Articles

<span class="mw-page-title-main">Erosion</span> Natural processes that remove soil and rock

Erosion is the action of surface processes that removes soil, rock, or dissolved material from one location on the Earth's crust and then transports it to another location where it is deposited. Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by dissolution. Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and cementation of particles

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Till</span> Unsorted glacial sediment

Till or glacial till is unsorted glacial sediment.

<span class="mw-page-title-main">Sediment</span> Particulate solid matter that is deposited on the surface of land

Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation; if buried, they may eventually become sandstone and siltstone through lithification.

<span class="mw-page-title-main">Silt</span> Classification of soil or sediment

Silt is granular material of a size between sand and clay and composed mostly of broken grains of quartz. Silt may occur as a soil or as sediment mixed in suspension with water. Silt usually has a floury feel when dry, and lacks plasticity when wet. Silt can also be felt by the tongue as granular when placed on the front teeth.

<span class="mw-page-title-main">Fluvial sediment processes</span> Sediment processes associated with rivers and streams

In geography and geology, fluvial sediment processes or fluvial sediment transport are associated with rivers and streams and the deposits and landforms created by sediments. It can result in the formation of ripples and dunes, in fractal-shaped patterns of erosion, in complex patterns of natural river systems, and in the development of floodplains and the occurrence of flash floods. Sediment moved by water can be larger than sediment moved by air because water has both a higher density and viscosity. In typical rivers the largest carried sediment is of sand and gravel size, but larger floods can carry cobbles and even boulders. When the stream or rivers are associated with glaciers, ice sheets, or ice caps, the term glaciofluvial or fluvioglacial is used, as in periglacial flows and glacial lake outburst floods. Fluvial sediment processes include the motion of sediment and erosion or deposition on the river bed.

<span class="mw-page-title-main">Deposition (geology)</span> Geological process in which sediments, soil and rocks are added to a landform or landmass

Deposition is the geological process in which sediments, soil and rocks are added to a landform or landmass. Wind, ice, water, and gravity transport previously weathered surface material, which, at the loss of enough kinetic energy in the fluid, is deposited, building up layers of sediment.

<span class="mw-page-title-main">Aeolian processes</span> Processes due to wind activity

Aeolian processes, also spelled eolian, pertain to wind activity in the study of geology and weather and specifically to the wind's ability to shape the surface of the Earth. Winds may erode, transport, and deposit materials and are effective agents in regions with sparse vegetation, a lack of soil moisture and a large supply of unconsolidated sediments. Although water is a much more powerful eroding force than wind, aeolian processes are important in arid environments such as deserts.

<span class="mw-page-title-main">Conglomerate (geology)</span> Sedimentary rock composed of smaller rock fragments

Conglomerate is a clastic sedimentary rock that is composed of a substantial fraction of rounded to subangular gravel-size clasts. A conglomerate typically contains a matrix of finer-grained sediments, such as sand, silt, or clay, which fills the interstices between the clasts. The clasts and matrix are typically cemented by calcium carbonate, iron oxide, silica, or hardened clay.

<span class="mw-page-title-main">Terminal moraine</span> Type of moraine that forms at the terminal of a glacier

A terminal moraine, also called an end moraine, is a type of moraine that forms at the terminal (edge) of a glacier, marking its maximum advance. At this point, debris that has accumulated by plucking and abrasion, has been pushed by the front edge of the ice, is driven no further and instead is deposited in an unsorted pile of sediment. Because the glacier acts very much like a conveyor belt, the longer it stays in one place, the greater the amount of material that will be deposited. The moraine is left as the marking point of the terminal extent of the ice.

<span class="mw-page-title-main">Mudrock</span> Type of sedimentary rock

Mudrocks are a class of fine-grained siliciclastic sedimentary rocks. The varying types of mudrocks include siltstone, claystone, mudstone, slate, and shale. Most of the particles of which the stone is composed are less than 116 mm and are too small to study readily in the field. At first sight, the rock types appear quite similar; however, there are important differences in composition and nomenclature.

<span class="mw-page-title-main">Outwash fan</span> Type of sediment deposition by a melting glacier

An outwash fan is a fan-shaped body of sediments deposited by braided streams from a melting glacier. Sediment locked within the ice of the glacier gets transported by the streams of meltwater, and deposits on the outwash plain, at the terminus of the glacier. The outwash, the sediment transported and deposited by the meltwater and that makes up the fan, is usually poorly sorted due to the short distance traveled before being deposited.

<span class="mw-page-title-main">Abrasion (geology)</span> Process of erosion

Abrasion is a process of erosion that occurs when material being transported wears away at a surface over time, commonly happens in ice and glaciers. The primary process of abrasion is physical weathering. Its the process of friction caused by scuffing, scratching, wearing down, marring, and rubbing away of materials. The intensity of abrasion depends on the hardness, concentration, velocity and mass of the moving particles. Abrasion generally occurs in four ways: glaciation slowly grinds rocks picked up by ice against rock surfaces; solid objects transported in river channels make abrasive surface contact with the bed and walls; objects transported in waves breaking on coastlines; and by wind transporting sand or small stones against surface rocks. Abrasion is the natural scratching of bedrock by a continuous movement of snow or glacier downhill. This is caused by a force, friction, vibration, or internal deformation of the ice, and by sliding over the rocks and sediments at the base that causes the glacier to move.

<span class="mw-page-title-main">Depositional environment</span> Processes associated with the deposition of a particular type of sediment

In geology, depositional environment or sedimentary environment describes the combination of physical, chemical, and biological processes associated with the deposition of a particular type of sediment and, therefore, the rock types that will be formed after lithification, if the sediment is preserved in the rock record. In most cases, the environments associated with particular rock types or associations of rock types can be matched to existing analogues. However, the further back in geological time sediments were deposited, the more likely that direct modern analogues are not available.

A subaqueous fan is a fan-shaped deposit formed beneath water, that is commonly related to glaciers and crater lakes.

<span class="mw-page-title-main">Dropstone</span> Rock fragments found within host rock

Dropstones are isolated fragments of rock found within finer-grained water-deposited sedimentary rocks or pyroclastic beds. They range in size from small pebbles to boulders. The critical distinguishing feature is that there is evidence that they were not transported by normal water currents, but rather dropped in vertically through the air or water column. Such depositions can occur during a volcanic eruption, e.g.

Fluvioglacial landforms or glaciofluvial landforms are those that result from the associated erosion and deposition of sediments caused by glacial meltwater. Glaciers contain suspended sediment loads, much of which is initially picked up from the underlying landmass. Landforms are shaped by glacial erosion through processes such as glacial quarrying, abrasion, and meltwater. Glacial meltwater contributes to the erosion of bedrock through both mechanical and chemical processes. Fluvio-glacial processes can occur on the surface and within the glacier. The deposits that happen within the glacier are revealed after the entire glacier melts or partially retreats. Fluvio-glacial landforms and erosional surfaces include: outwash plains, kames, kame terraces, kettle holes, eskers, varves, and proglacial lakes.

This glossary of geology is a list of definitions of terms and concepts relevant to geology, its sub-disciplines, and related fields. For other terms related to the Earth sciences, see Glossary of geography terms.

<span class="mw-page-title-main">Lacustrine deposits</span>

Lacustrine deposits are sedimentary rock formations which formed in the bottom of ancient lakes. A common characteristic of lacustrine deposits is that a river or stream channel has carried sediment into the basin. Lacustrine deposits form in all lake types including rift graben lakes, oxbow lakes, glacial lakes, and crater lakes. Lacustrine environments, like seas, are large bodies of water. They share similar sedimentary deposits which are mainly composed of low-energy particle sizes. Lacustrine deposits are typically very well sorted with highly laminated beds of silts, clays, and occasionally carbonates. In regards to geologic time, lakes are temporary and once they no longer receive water, they dry up and leave a formation.

<span class="mw-page-title-main">Edaga Arbi Glacials</span> Palaeozoic geological formation in Africa

The Edaga Arbi Glacials are a Palaeozoic geological formation in Tigray and in Eritrea. The matrix is composed of grey, black and purple clays, that contains rock fragments up to 6 metres across. Pollen dating yields a Late Carboniferous to Early Permian age.

References

  1. 1 2 3 4 5 6 7 Barnes, Burton; Zak, Donald; Denton, Shirley; Spurr, Stephen (1980). Forest Ecology. New York, NY: John Wiley & Sons, Inc. ISBN   978-0-471-30822-5.
  2. Brady, Nyle; Weil, Ray (1996). The Nature and Properties of Soils. Upper Saddle River, NJ: Prentice Hall. ISBN   978-0-13-016763-7.