Watershed management

Last updated

Watershed management is the study of the relevant characteristics of a watershed aimed at the sustainable distribution of its resources and the process of creating and implementing plans, programs and projects to sustain and enhance watershed functions that affect the plant, animal, and human communities within the watershed boundary. [1] Features of a watershed that agencies seek to manage to include water supply, water quality, drainage, stormwater runoff, water rights and the overall planning and utilization of watersheds. Landowners, land use agencies, stormwater management experts, environmental specialists, water use surveyors and communities all play an integral part in watershed management.

Contents

Controlling pollution

In agricultural systems, common practices include the use of buffer strips, grassed waterways, the re-establishment of wetlands, and forms of sustainable agriculture practices such as conservation tillage, crop rotation and inter-cropping. After certain practices are installed, it is important to continuously monitor these systems to ensure that they are working properly in terms of improving environmental quality. [2]

In urban settings, managing areas to prevent soil loss and control stormwater flow are a few of the areas that receive attention. A few practices that are used to manage stormwater before it reaches a channel are retention ponds, filtering systems and wetlands. It is important that storm-water is given an opportunity to infiltrate so that the soil and vegetation can act as a "filter" before the water reaches nearby streams or lakes. In the case of soil erosion prevention, a few common practices include the use of silt fences, landscape fabric with grass seed and hydroseeding. The main objective in all cases is to slow water movement to prevent soil transport.

Governance

The 2nd World Water Forum held in The Hague in March 2000 raised some controversies that exposed the multilateral nature and imbalance the demand and supply management of freshwater. While donor organizations, private and government institutions backed by the World Bank, believe that freshwater should be governed as an economic good by appropriate pricing, NGOs however, held that freshwater resources should be seen as a social good. [3] The concept of network governance where all stakeholders form partnerships and voluntarily share ideas towards forging a common vision can be used to resolve this clash of opinion in freshwater management. Also, the implementation of any common vision presents a new role for NGOs because of their unique capabilities in local community coordination, thus making them a valuable partner in network governance. [4]

Watersheds replicate this multilateral terrain with private industries and local communities interconnected by a common watershed. Although these groups share a common ecological space that could transcend state borders, their interests, knowledge and use of resources within the watershed are mostly disproportionate and divergent, resulting to the activities of a specific group adversely impacting on other groups. Examples being the Minamata Bay poisoning that occurred from 1932 to 1968, killing over 1,784 individuals and the Wabigoon River incidence of 1962. Furthermore, while some knowledgeable groups are shifting from efficient water resource exploitation to efficient utilization, net gain for the watershed ecology could be lost when other groups seize the opportunity to exploit more resources.

Moreover, the need to create partnerships between donor organizations, private and government institutions and community representatives like NGOs in watersheds is to enhance an "organizational society" among stakeholders. [5]

Several riparian states have adopted this concept in managing the increasingly scarce resources of watersheds. These include the nine Rhine states, with a common vision of pollution control, [6] the Lake Chad and river Nile Basins, whose common vision is to ensure environmental sustainability. [7] As a partner in the commonly shared vision, NGOs has adopted a new role in operationalizing the implementation of regional watershed management policies at the local level. For instance, essential local coordination and education are areas where the services of NGOs have been effective. [8] This makes NGOs the "nuclei" for successful watershed management. [4] Recently, artificial Intelligence techniques such as neural networks have been utilized to address the problem of watershed management. [9]

Environmental law

Environmental laws often dictate the planning and actions that agencies take to manage watersheds. Some laws require that planning be done, others can be used to make a plan legally enforceable and others set out the ground rules for what can and cannot be done in development and planning. Most countries and states have their own laws regarding watershed management.

Those concerned about aquatic habitat protection have a right to participate in the laws and planning processes that affect aquatic habitats. By having a clear understanding of whom to speak to and how to present the case for keeping our waterways clean a member of the public can become an effective watershed protection advocate.

See also

Related Research Articles

<span class="mw-page-title-main">Stormwater</span> Water that originates during precipitation events and snow/ice melt

Stormwater, also written storm water, is water that originates from precipitation (storm), including heavy rain and meltwater from hail and snow. Stormwater can soak into the soil (infiltrate) and become groundwater, be stored on depressed land surface in ponds and puddles, evaporate back into the atmosphere, or contribute to surface runoff. Most runoff is conveyed directly as surface water to nearby streams, rivers or other large water bodies without treatment.

<span class="mw-page-title-main">Rain garden</span> Runoff reducing landscaping method

Rain gardens, also called bioretention facilities, are one of a variety of practices designed to increase rain runoff reabsorption by the soil. They can also be used to treat polluted stormwater runoff. Rain gardens are designed landscape sites that reduce the flow rate, total quantity, and pollutant load of runoff from impervious urban areas like roofs, driveways, walkways, parking lots, and compacted lawn areas. Rain gardens rely on plants and natural or engineered soil medium to retain stormwater and increase the lag time of infiltration, while remediating and filtering pollutants carried by urban runoff. Rain gardens provide a method to reuse and optimize any rain that falls, reducing or avoiding the need for additional irrigation. A benefit of planting rain gardens is the consequential decrease in ambient air and water temperature, a mitigation that is especially effective in urban areas containing an abundance of impervious surfaces that absorb heat in a phenomenon known as the heat-island effect.

<span class="mw-page-title-main">Surface runoff</span> Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.

<span class="mw-page-title-main">Sustainable drainage system</span>

Sustainable drainage systems are a collection of water management practices that aim to align modern drainage systems with natural water processes and are part of a larger green infrastructure strategy. SuDS efforts make urban drainage systems more compatible with components of the natural water cycle such as storm surge overflows, soil percolation, and bio-filtration. These efforts hope to mitigate the effect human development has had or may have on the natural water cycle, particularly surface runoff and water pollution trends.

<span class="mw-page-title-main">Hydrological transport model</span>

An hydrological transport model is a mathematical model used to simulate the flow of rivers, streams, groundwater movement or drainage front displacement, and calculate water quality parameters. These models generally came into use in the 1960s and 1970s when demand for numerical forecasting of water quality and drainage was driven by environmental legislation, and at a similar time widespread access to significant computer power became available. Much of the original model development took place in the United States and United Kingdom, but today these models are refined and used worldwide.

<span class="mw-page-title-main">Green infrastructure</span> Sustainable and resilient infrastructure

Green infrastructure or blue-green infrastructure refers to a network that provides the “ingredients” for solving urban and climatic challenges by building with nature. The main components of this approach include stormwater management, climate adaptation, the reduction of heat stress, increasing biodiversity, food production, better air quality, sustainable energy production, clean water, and healthy soils, as well as more anthropocentric functions, such as increased quality of life through recreation and the provision of shade and shelter in and around towns and cities. Green infrastructure also serves to provide an ecological framework for social, economic, and environmental health of the surroundings. More recently scholars and activists have also called for green infrastructure that promotes social inclusion and equality rather than reinforcing pre-existing structures of unequal access to nature-based services.

<span class="mw-page-title-main">Natural resource management</span> Management of natural resources

Natural resource management (NRM) is the management of natural resources such as land, water, soil, plants and animals, with a particular focus on how management affects the quality of life for both present and future generations (stewardship).

<span class="mw-page-title-main">Conservation Effects Assessment Project</span> United States government project

The Conservation Effects Assessment Project (CEAP) was established in 2002 to quantify the environmental impact of the United States Department of Agriculture's (USDA) conservation program. The project focuses on how watersheds are affected. CEAP monitored 14 benchmark watershed sites. The CEAP's vision is to enhance "natural resources and healthier ecosystems through improved conservation effectiveness and better management of agricultural landscapes. The goal is "to improve efficacy of conservations practices and programs by quantifying conservation effects and providing the science and education base needed to enrich conservation planning, implementation, management decisions, and policy."

<span class="mw-page-title-main">Infiltration basin</span> Form of engineered sump or percolation pond

An infiltration basin is a form of engineered sump or percolation pond that is used to manage stormwater runoff, prevent flooding and downstream erosion, and improve water quality in an adjacent river, stream, lake or bay. It is essentially a shallow artificial pond that is designed to infiltrate stormwater through permeable soils into the groundwater aquifer. Infiltration basins do not release water except by infiltration, evaporation or emergency overflow during flood conditions.

Water resources management is a key element of Brazil's strategy to promote sustainable growth and a more equitable and inclusive society. Brazil's achievements over the past 70 years have been closely linked to the development of hydraulic infrastructure for hydroelectric power generation and just recently to the development of irrigation infrastructure, especially in the Northeast region.

The Nile Basin Initiative (NBI) is a partnership among the Nile riparian states that “seeks to develop the river in a cooperative manner, share substantial socioeconomic benefits, and promote regional peace and security”. The NBI began with a dialogue among the riparian states that resulted in a shared vision objective “to achieve sustainable socioeconomic development through the equitable utilization of, and benefit from, the common Nile Basin water resources." It was formally launched in February 1999 by the water ministers of nine countries that share the river: Egypt, Sudan, Ethiopia, Uganda, Kenya, Tanzania, Burundi, Rwanda, the Democratic Republic of Congo (DRC), as well as Eritrea as an observer. From its beginning the Nile Basin Initiative has been supported by the World Bank and by other external partners. The World Bank has a mandate to support the work of the NBI, as lead development partner and as administrator of the multi-donor Nile Basin Trust Fund. One of the partners is the "Nile Basin Discourse", which describes itself as "a civil society network of organisations seeking to achieve positive influence over the development of projects and programmes under the Nile Basin Initiative".

<span class="mw-page-title-main">Water resources</span> Sources of water that are potentially useful

Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. 97% of the water on Earth is salt water and only three percent is fresh water; slightly over two-thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include surface water, under river flow, groundwater and frozen water. Artificial sources of fresh water can include treated wastewater and desalinated seawater. Human uses of water resources include agricultural, industrial, household, recreational and environmental activities.

There is a long and established framework for water resources management in Colombia. The Environment Ministry and up to 33 Regional Authorities, are in charge of water resources management and policies at the national and regional and watershed level, respectively. Other sectoral ministries are in charge of water demand for energy, water supply and sanitation and water for irrigation.

<span class="mw-page-title-main">Community forestry</span>

Community forestry is an evolving branch of forestry whereby the local community plays a significant role in forest management and land use decision making by themselves in the facilitating support of government as well as change agents. It involves the participation and collaboration of various stakeholders including community, government and non-governmental organisations (NGOs). The level of involvement of each of these groups is dependent on the specific community forest project, the management system in use and the region. It gained prominence in the mid-1970s and examples of community forestry can now be seen in many countries including Nepal, Indonesia, Korea, Brazil, India and North America.

<span class="mw-page-title-main">Integrated urban water management</span>

Integrated urban water management (IUWM) is the practice of managing freshwater, wastewater, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. IUWM is commonly seen as a strategy for achieving the goals of Water Sensitive Urban Design. IUWM seeks to change the impact of urban development on the natural water cycle, based on the premise that by managing the urban water cycle as a whole; a more efficient use of resources can be achieved providing not only economic benefits but also improved social and environmental outcomes. One approach is to establish an inner, urban, water cycle loop through the implementation of reuse strategies. Developing this urban water cycle loop requires an understanding both of the natural, pre-development, water balance and the post-development water balance. Accounting for flows in the pre- and post-development systems is an important step toward limiting urban impacts on the natural water cycle.

Environmental governance (EG) consist of a system of laws, norms, rules, policies and practices that dictate how the board members of an environment related regulatory body should manage and oversee the affairs of any environment related regulatory body which is responsible for ensuring sustainability (sustainable development) and manage all human activities—political, social and economic. Environmental governance includes government, business and civil society, and emphasizes whole system management. To capture this diverse range of elements, environmental governance often employs alternative systems of governance, for example watershed-based management.

Water resources management in Nicaragua is carried out by the National water utility and regulated by the Nicaraguan Institute of water. Nicaragua has ample water supplies in rivers, groundwater, lagoons, and significant rainfall. Distribution of rainfall is uneven though with more rain falling on an annual basis in the Caribbean lowlands and much lower amounts falling in the inland areas. Significant water resources management challenges include contaminated surface water from untreated domestic and industrial wastewater, and poor overall management of the available water resources.

<span class="mw-page-title-main">Water-sensitive urban design</span> Integrated approach to urban water cycle

Water-sensitive urban design (WSUD) is a land planning and engineering design approach which integrates the urban water cycle, including stormwater, groundwater, and wastewater management and water supply, into urban design to minimise environmental degradation and improve aesthetic and recreational appeal. WSUD is a term used in the Middle East and Australia and is similar to low-impact development (LID), a term used in the United States; and Sustainable Drainage System (SuDS), a term used in the United Kingdom.

Soil governance refers to the policies, strategies, and the processes of decision-making employed by nation states and local governments regarding the use of soil. Globally, governance of the soil has been limited to an agricultural perspective due to increased food insecurity from the most populated regions on earth. The Global Soil Partnership, GSP, was initiated by the Food and Agriculture Organization (FAO) and its members with the hope to improve governance of the limited soil resources of the planet in order to guarantee healthy and productive soils for a food-secure world, as well as support other essential ecosystem services.

<span class="mw-page-title-main">Low-impact development (U.S. and Canada)</span>

Low-impact development (LID) is a term used in Canada and the United States to describe a land planning and engineering design approach to manage stormwater runoff as part of green infrastructure. LID emphasizes conservation and use of on-site natural features to protect water quality. This approach implements engineered small-scale hydrologic controls to replicate the pre-development hydrologic regime of watersheds through infiltrating, filtering, storing, evaporating, and detaining runoff close to its source. Green infrastructure investments are one approach that often yields multiple benefits and builds city resilience.

References

  1. California Watershed Program
  2. "SWAT | Soil & Water Assessment Tool". swat.tamu.edu. Retrieved 2023-02-22.
  3. Oweyegha-Afunaduula, F.C., I. Afunaduula and M. Balunywa (2003). NGO-sing the Nile Basin Initiative: a myth or reality? Paper at 3rd World Water Forum, Japan, March 2003
  4. 1 2 Evans J: Environmental governance (2012), Routledge, Chapter 4 ISBN   978-0415589826
  5. Ewalt, J. G. 2001. Theories of Governance and New Public Management: Links to Understanding Welfare Policy Implementation. Paper Presented at the Annual Conference of the American Society for Public Administration. Also available at: http://unpan1.un.org/intradoc/groups/public/documents/aspa/unpan000563.pdf.
  6. 8. Transboundary River Basin Management Regimes: the Rhine basin case study, Newater, pp1-37. Also available at: http://www.tudelft.nl/live/binaries/9229ebc0-66d0-47ca-9d25-5ab2184c85f4/doc/D131_Rhine_Final.pdf
  7. "Nile Basin Initiative".
  8. 7. Prabhakar K, Lavanya K, and Papa Rao A (2010); NGOs and Farmers Participation in Watershed Development Programme in Prakasam District, Asia-Pacific Journal of Social Science, Volume II (1) Pages173-182. Also available at: http://www.socialsciences-ejournal.org/3.9.%20Prabhakar.pdf.
  9. Mason, Karl; Duggan, Jim; Howley, Enda (2018). "A Meta Optimisation Analysis of Particle Swarm Optimisation Velocity Update Equations for Watershed Management Learning". Applied Soft Computing. 62: 148–161. doi:10.1016/j.asoc.2017.10.018.

Further reading