Kettle (landform)

Last updated
Satellite image of kettle lakes in Yamal Peninsula (Northern Siberia), adjacent to the Gulf of Ob (right). The lake colors indicate amounts of sediment or depth. PotholeLakes.Siberia.L7.20010910.jpg
Satellite image of kettle lakes in Yamal Peninsula (Northern Siberia), adjacent to the Gulf of Ob (right). The lake colors indicate amounts of sediment or depth.

A kettle (also known as a kettle hole, kettlehole, or pothole) is a depression or hole in an outwash plain formed by retreating glaciers or draining floodwaters. The kettles are formed as a result of blocks of dead ice left behind by retreating glaciers, which become surrounded by sediment deposited by meltwater streams as there is increased friction. [1] The ice becomes buried in the sediment and when the ice melts, a depression is left called a kettle hole, creating a dimpled appearance on the outwash plain. Lakes often fill these kettles; these are called kettle hole lakes. Another source is the sudden drainage of an ice-dammed lake and when the block melts, the hole it leaves behind is a kettle. As the ice melts, ramparts can form around the edge of the kettle hole. The lakes that fill these holes are seldom more than 10 m (33 ft) deep and eventually fill with sediment. In acidic conditions, a kettle bog may form but in alkaline conditions, it will be kettle peatland.[ clarification needed ]

Contents

Overview

Kettles are fluvioglacial landforms occurring as the result of blocks of ice calving from the front of a receding glacier and becoming partially to wholly buried by glacial outwash. Glacial outwash is generated when streams of meltwater flow away from the glacier and deposit sediment to form broad outwash plains called sandurs. When the ice blocks melt, kettle holes are left in the sandur. When the development of numerous kettle holes disrupt sandur surfaces, a jumbled array of ridges and mounds form, resembling kame and kettle topography. [2] Kettle holes can also occur in ridge shaped deposits of loose rock fragments called till. [3]

Kettle holes can form as the result of floods caused by the sudden drainage of an ice-dammed lake. These floods, called jökulhlaups, often rapidly deposit large quantities of sediment onto the sandur surface. The kettle holes are formed by the melting blocks of sediment-rich ice that were transported and consequently buried by the jökulhlaups. It was found in field observations and laboratory simulations done by Maizels in 1992 that ramparts form around the edge of kettle holes generated by jökulhlaups. The development of distinct types of ramparts depends on the concentration of rock fragments contained in the melted ice block and on how deeply the block was buried by sediment. [4]

Most kettle holes are less than two kilometres in diameter, although some in the U.S. Midwest exceed ten kilometres. Puslinch Lake in Ontario, Canada, is the largest kettle lake in Canada spanning 160 hectares (400 acres). Fish Lake in the north-central Cascade Mountains of the U.S. state of Washington is 200 hectares (490 acres). [5]

A kettle in the Isunngua highland, central-western Greenland Kettle-glacial-lake-form-isunngua-greenland.jpg
A kettle in the Isunngua highland, central-western Greenland

The depth of most kettles is less than ten meters. [3] In most cases, kettle holes eventually fill with water, sediment, or vegetation. If the kettle is fed by surface or underground rivers or streams, it becomes a kettle lake. If the kettle receives its water from precipitation, the groundwater table, or a combination of the two, it is termed a kettle pond or kettle wetland, if vegetated. Kettle ponds that are not affected by the groundwater table will usually become dry during the warm summer months, in which case they are deemed ephemeral. [6]

Bogs

If water in a kettle becomes acidic due to decomposing organic plant matter, it becomes a kettle bog; or, if underlying soils are lime-based and neutralize the acidic conditions somewhat, it becomes a kettle peatland. Kettle bogs are closed ecosystems because they have no water source other than precipitation. Acidic kettle bogs and fresh water kettles are important ecological niches for some symbiotic species of flora and fauna. [7]

A kettle pond in the Hossa hiking area, Suomussalmi, Finland Kettle pond Hossa.jpg
A kettle pond in the Hossa hiking area, Suomussalmi, Finland
Numerous kettle lakes border the Denali Highway in Alaska Lakesalaskarange.JPG
Numerous kettle lakes border the Denali Highway in Alaska

The Kettle Moraine, a region of Wisconsin covering an area from Green Bay to south-central Wisconsin, has numerous kettles, moraines and other glacial features. It has many kettle lakes, some of which are 100 to 200 feet (61 m) deep.

Examples

The Prairie Pothole Region extends from northern Alberta, Canada to Iowa, United States and includes thousands of small sloughs and lakes.

See also

Related Research Articles

<span class="mw-page-title-main">Glacier</span> Persistent body of ice that is moving downhill under its own weight

A glacier is a persistent body of dense ice that is constantly moving downhill under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

<span class="mw-page-title-main">Plain</span> Expanse of land that is mostly flat and treeless

In geography, a plain, commonly known as flatland, is a flat expanse of land that generally does not change much in elevation, and is primarily treeless. Plains occur as lowlands along valleys or at the base of mountains, as coastal plains, and as plateaus or uplands. Plains are one of the major landforms on earth, being present on all continents and covering more than one-third of the world's land area. Plains in many areas are important for agriculture. There are various types of plains and biomes on them.

<span class="mw-page-title-main">Moraine</span> Glacially formed accumulation of debris

A moraine is any accumulation of unconsolidated debris, sometimes referred to as glacial till, that occurs in both currently and formerly glaciated regions, and that has been previously carried along by a glacier or ice sheet. It may consist of partly rounded particles ranging in size from boulders down to gravel and sand, in a groundmass of finely-divided clayey material sometimes called glacial flour. Lateral moraines are those formed at the side of the ice flow, and terminal moraines are those formed at the foot, marking the maximum advance of the glacier. Other types of moraine include ground moraines and medial moraines.

<span class="mw-page-title-main">Till</span> Unsorted glacial sediment

Till or glacial till is unsorted glacial sediment.

Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.

A kame delta is a glacial landform formed by a stream of melt water flowing through or around a glacier and depositing material, known as kame deposits. Upon entering a proglacial lake at the end (terminus) of a glacier, the river/stream deposit these sediments. This landform can be observed after the glacier has melted and the delta's asymmetrical triangular shape is visible. Once the glacier melts, the edges of the delta may subside as ice under it melts. Glacial till is deposited on the lateral sides of the delta, as the glacier melts.

<span class="mw-page-title-main">Wisconsin glaciation</span> North American glacial ice sheet

The Wisconsin glaciation, also called the Wisconsin glacial episode, was the most recent glacial period of the North American ice sheet complex, peaking more than 20,000 years ago. This advance included the Cordilleran Ice Sheet, which nucleated in the northern North American Cordillera; the Innuitian ice sheet, which extended across the Canadian Arctic Archipelago; the Greenland ice sheet; and the massive Laurentide Ice Sheet, which covered the high latitudes of central and eastern North America. This advance was synchronous with global glaciation during the last glacial period, including the North American alpine glacier advance, known as the Pinedale glaciation. The Wisconsin glaciation extended from about 75,000 to 11,000 years ago, between the Sangamonian Stage and the current interglacial, the Holocene. The maximum ice extent occurred about 25,000–21,000 years ago during the last glacial maximum, also known as the Late Wisconsin in North America.

<span class="mw-page-title-main">Tarn (lake)</span> Mountain lake or pool in a glacial cirque

A tarn is a mountain lake, pond or pool, formed in a cirque excavated by a glacier. A moraine may form a natural dam below a tarn.

<span class="mw-page-title-main">Kame</span> Mound formed on a retreating glacier and deposited on land

A kame, or knob, is a glacial landform, an irregularly shaped hill or mound composed of sand, gravel and till that accumulates in a depression on a retreating glacier, and is then deposited on the land surface with further melting of the glacier. Kames are often associated with kettles, and this is referred to as kame and kettle or knob and kettle topography. The word kame is a variant of comb, which has the meaning "crest" among others. The geological term was introduced by Thomas Jamieson in 1874.

<span class="mw-page-title-main">Outwash plain</span> Plain formed from glacier sediment transported by meltwater

An outwash plain, also called a sandur, sandr or sandar, is a plain formed of glaciofluvial deposits due to meltwater outwash at the terminus of a glacier. As it flows, the glacier grinds the underlying rock surface and carries the debris along. The meltwater at the snout of the glacier deposits its load of sediment over the outwash plain, with larger boulders being deposited near the terminal moraine, and smaller particles travelling further before being deposited. Sandurs are common in Iceland where geothermal activity accelerates the melting of ice flows and the deposition of sediment by meltwater.

<span class="mw-page-title-main">Glacial motion</span> Geological phenomenon

Glacial motion is the motion of glaciers, which can be likened to rivers of ice. It has played an important role in sculpting many landscapes. Most lakes in the world occupy basins scoured out by glaciers. Glacial motion can be fast or slow, but is typically around 25 centimetres per day (9.8 in/d).

<span class="mw-page-title-main">Glacial landform</span> Landform created by the action of glaciers

Glacial landforms are landforms created by the action of glaciers. Most of today's glacial landforms were created by the movement of large ice sheets during the Quaternary glaciations. Some areas, like Fennoscandia and the southern Andes, have extensive occurrences of glacial landforms; other areas, such as the Sahara, display rare and very old fossil glacial landforms.

<span class="mw-page-title-main">Terminal moraine</span> Type of moraine that forms at the terminal of a glacier

A terminal moraine, also called an end moraine, is a type of moraine that forms at the terminal (edge) of a glacier, marking its maximum advance. At this point, debris that has accumulated by plucking and abrasion, has been pushed by the front edge of the ice, is driven no further and instead is deposited in an unsorted pile of sediment. Because the glacier acts very much like a conveyor belt, the longer it stays in one place, the greater the amount of material that will be deposited. The moraine is left as the marking point of the terminal extent of the ice.

<span class="mw-page-title-main">Pingo</span> Mound of earth-covered ice

Pingos are intrapermafrost ice-cored hills, 3–70 m (10–230 ft) high and 30–1,000 m (98–3,281 ft) in diameter. They are typically conical in shape and grow and persist only in permafrost environments, such as the Arctic and subarctic. A pingo is a periglacial landform, which is defined as a non-glacial landform or process linked to colder climates. It is estimated that there are more than 11,000 pingos on Earth, with the Tuktoyaktuk peninsula area having the greatest concentration at a total of 1,350. There is currently remarkably limited data on pingos.

<span class="mw-page-title-main">Kettle Moraine</span> Large moraine in Wisconsin

Geological Formation In Wisconsin

<span class="mw-page-title-main">Pike Lake Unit, Kettle Moraine State Forest</span> State Forest in Washington County, Wisconsin

The Pike Lake Unit of the Kettle Moraine State Forest is a 825-acre (334 ha) unit of the Wisconsin state park system. The unit is located just east of Hartford, Wisconsin on State Highway 60, on the east shore of the 446-acre (180 ha) Pike Lake. It was dedicated by Wisconsin governor Patrick J. Lucey in June 1971.

<span class="mw-page-title-main">Glacial history of Minnesota</span>

The glacial history of Minnesota is most defined since the onset of the last glacial period, which ended some 10,000 years ago. Within the last million years, most of the Midwestern United States and much of Canada were covered at one time or another with an ice sheet. This continental glacier had a profound effect on the surface features of the area over which it moved. Vast quantities of rock and soil were scraped from the glacial centers to its margins by slowly moving ice and redeposited as drift or till. Much of this drift was dumped into old preglacial river valleys, while some of it was heaped into belts of hills at the margin of the glacier. The chief result of glaciation has been the modification of the preglacial topography by the deposition of drift over the countryside. However, continental glaciers possess great power of erosion and may actually modify the preglacial land surface by scouring and abrading rather than by the deposition of the drift.

Fluvioglacial landforms or glaciofluvial landforms are those that result from the associated erosion and deposition of sediments caused by glacial meltwater. Glaciers contain suspended sediment loads, much of which is initially picked up from the underlying landmass. Landforms are shaped by glacial erosion through processes such as glacial quarrying, abrasion, and meltwater. Glacial meltwater contributes to the erosion of bedrock through both mechanical and chemical processes. Fluvio-glacial processes can occur on the surface and within the glacier. The deposits that happen within the glacier are revealed after the entire glacier melts or partially retreats. Fluvio-glacial landforms and erosional surfaces include: outwash plains, kames, kame terraces, kettle holes, eskers, varves, and proglacial lakes.

<span class="mw-page-title-main">Kankakee Outwash Plain</span>

The Kankakee Outwash Plain is a flat plain interspersed with sand dunes in the Kankakee River valley in northwestern Indiana and northeastern Illinois of the United States. It is just south of the Valparaiso Moraine and was formed during the Wisconsin Glaciation. As the glacier stopped at the Valparaiso Moraine, its meltwater was carried away to the outwash plain. On the south side of the moraine, where the elevation drops, the meltwaters eroded away valleys, carrying sand and mud with them. As the muddy meltwater reached the valley where the slope lessened, the water slowed, depositing the sand on the outwash plain. This created a smooth, flat, and sandy plain. Before its draining, the Kankakee Marsh, located on the outwash plain, was one of the largest freshwater marshes in the United States.

The glacial series refers to a particular sequence of landforms in Central Europe that were formed during the Pleistocene glaciation beneath the ice sheets, along their margins and on their forelands during each glacial advance.

References

  1. Janowski, Lukasz; Tylmann, Karol; Trzcinska, Karolina; Rudowski, Stanislaw; Tegowski, Jaroslaw (2021). "Exploration of Glacial Landforms by Object-Based Image Analysis and Spectral Parameters of Digital Elevation Model". IEEE Transactions on Geoscience and Remote Sensing: 1–17. doi: 10.1109/TGRS.2021.3091771 .
  2. Bennet, M and Glasser, N: Glacial Geology:Ice Sheets and Landforms, page 262. John Wiley and Sons, 1997
  3. 1 2 Tarbuck, E and Lutgens, F: Earth, page 351. Prentice Hall, 2002
  4. Bennett, M and Glasser, N: Glacial Geology: Ice Sheets and Landforms, page 267. John Wiley and Sons, 1997
  5. Schmuck and Peterson, 2002 Warmwater Fisheries Survey of Fish Lake, Chelan County, Washington, page 1, State of Washington, 2005
  6. "Glacial Formations -- The Slackpacker's Geology Primer". Slackpacker.com. Retrieved 18 November 2017.
  7. "Interests". Kmoraine.com. Retrieved 18 November 2017.
  8. "Mires". Rokua Geopark. Retrieved 15 October 2018.
  9. "Ponds and pingos". Norfolk Wildlife Trust. Retrieved 2021-04-07.
  10. "TEE LAKE GREENWOOD TOWNSHIP OSCODA COUNTY : 1992-2010 WATER QUALITY STUDIES" (PDF). Teelaketimes.com. Retrieved 18 November 2017.
  11. "Burton Wetlands Nature Preserve, Burton | Geauga Park District". Geaugaparkdistrict.org. Retrieved April 14, 2021.
  12. "Late Pleistocene Glacial History of Whidbey Island, WA" (PDF). faculty.washington.edu. Retrieved 2020-10-23.

Further reading