Laurentide ice sheet

Last updated
Laurentide ice sheet
Pleistocene north ice map.jpg
The maximum extent of glacial ice in the north polar area during the Pleistocene period included the vast Laurentide ice sheet in eastern North America.
TypeContinental
Location North America
Highest elevation
  • Baffin ice sheet (Foxe Dome): 2,200 to 2,400 metres (7,200 to 7,900 ft) above sea level
  • Keewatin ice sheet (Keewatin Dome): 3,200 metres (10,500 ft) above sea level [1]
Lowest elevationSea level
Terminus
StatusRemnant: Greenland ice sheet [1]

The Laurentide ice sheet was a massive sheet of ice that covered millions of square miles, including most of Canada and a large portion of the Northern United States, multiple times during the Quaternary glacial epochs, from 2.58 million years ago to the present. [2]

Contents

The last advance covered most of northern North America between c. 95,000 and c. 20,000 years before the present day and, among other geomorphological effects, gouged out the five Great Lakes and the hosts of smaller lakes of the Canadian Shield. These lakes extend from the eastern Northwest Territories, through most of northern Canada, and the upper Midwestern United States (Minnesota, Wisconsin, and Michigan) to the Finger Lakes, through Lake Champlain and Lake George areas of New York, across the northern Appalachians into and through all of New England and Nova Scotia.

At times, the ice sheet's southern margin included the present-day sites of coastal towns of the Northeastern United States, and cities such as Boston and New York City and Great Lakes coastal cities and towns as far south as Chicago and St. Louis, Missouri, and then followed the present course of the Missouri River up to the northern slopes of the Cypress Hills, beyond which it merged with the Cordilleran Ice Sheet. The ice coverage extended approximately as far south as 38 degrees latitude mid-continent. [3]

Description

This ice sheet was the primary feature of the Pleistocene epoch in North America, commonly referred to as the ice age. During the Pre-Illinoian Stage, the Laurentide Ice Sheet extended as far south as the Missouri and Ohio River valleys. It was up to 2 mi (3.2 km) thick in Nunavik, Quebec, Canada, but much thinner at its edges, where nunataks were common in hilly areas. It created much of the surface geology of southern Canada and the northern United States, leaving behind glacially scoured valleys, moraines, eskers and glacial till. It also caused many changes to the shape, size, and drainage of the Great Lakes. As but one of many examples, near the end of the last ice age, Lake Iroquois extended well beyond the boundaries of present-day Lake Ontario, and drained down the Hudson River into the Atlantic Ocean. [4]

Its cycles of growth and melting were a decisive influence on global climate during its existence. This is because it served to divert the jet stream southward, which would otherwise flow from the relatively warm Pacific Ocean through Montana and Minnesota. That gave the Southwestern United States, otherwise a desert, abundant rainfall during ice ages, in extreme contrast to most other parts of the world which became exceedingly dry, though the effect of ice sheets in Europe had an analogous effect on the rainfall in Afghanistan, parts of Iran, possibly western Pakistan in winter, as well as North Africa.

The Barnes Ice Cap, containing remnants of the Laurentide Ice Sheet. Sea Ice off Baffin Island.jpg
The Barnes Ice Cap, containing remnants of the Laurentide Ice Sheet.

Its melting also caused major disruptions to the global climate cycle, because the huge influx of low-salinity water into the Arctic Ocean via the Mackenzie River [5] is believed to have disrupted the formation of North Atlantic Deep Water, the very saline, cold, deep water that flows from the Greenland Sea. That interrupted the thermohaline circulation, creating the brief Younger Dryas cold epoch and a temporary re-advance of the ice sheet, [6] which did not retreat from Nunavik until 6,500 years ago.

After the end of the Younger Dryas, the Laurentide Ice Sheet retreated rapidly to the north, becoming limited to only the Canadian Shield until even it became deglaciated. [7] The ultimate collapse of the Laurentide Ice Sheet is also suspected to have influenced European agriculture indirectly through the rise of global sea levels.

Canada's oldest ice is a 20,000-year-old remnant of the Laurentide Ice Sheet called the Barnes Ice Cap, on central Baffin Island.

Ice centers

During the Late Pleistocene, the Laurentide ice sheet reached from the Rocky Mountains eastward through the Great Lakes, into New England, covering nearly all of Canada east of the Rocky Mountains. [8] Three major ice centers formed in North America: the Labrador, Keewatin, and Cordilleran. The Cordilleran covered the region from the Pacific Ocean to the eastern front of the Rocky Mountains and the Labrador and Keewatin fields are referred to as the Laurentide Ice Sheet. Central North America has evidence of the numerous lobes and sublobes. The Keewatin covered the western interior plains of North America from the Mackenzie River to the Missouri River and the upper reaches of the Mississippi River. The Labrador covered spread over eastern Canada and the northeastern part of the United States abutting the Keewatin lobe in the western Great Lakes and Mississippi valley. [8]

Cordilleran ice flow

The Cordilleran ice sheet covered up to 2,500,000 square kilometres (970,000 sq mi) at the Last Glacial Maximum. [ citation needed ] The eastern edge abutted the Laurentide ice sheet. The sheet was anchored in the Coast Mountains of British Columbia and Alberta, south into the Cascade Range of Washington. That is one and a half times the water held in the Antarctic. Anchored in the mountain backbone of the west coast, the ice sheet dissipated north of the Alaska Range where the air was too dry to form glaciers. [8] It is believed that the Cordilleran ice melted rapidly, in less than 4000 years. The water created numerous Proglacial lakes along the margins such as Lake Missoula, often leading to catastrophic floods as with the Missoula Floods. Much of the topography of Eastern Washington and northern Montana and North Dakota was affected. [8]

Keewatin ice flow

The Keewatin ice sheet has had four or five primary lobes identified ice divides extending from a dome over west-central Keewatin (Kivalliq). Two of the lobes abut the adjacent Labrador and Baffin ice sheets. The primary lobes flow (1) towards Manitoba and Saskatchewan; (2) toward Hudson Bay; (3) towards the Gulf of Boothia, and (4) towards the Beaufort Sea. [9]

Labrador ice flow

The Labrador ice sheet flowed across all of Maine and into the Gulf of St. Lawrence, completely covering the Maritime Provinces. The Appalachian Ice Complex, flowed from the Gaspé Peninsula over New Brunswick, the Magdalen Shelf, and Nova Scotia. [9] The Labrador flow extended across the mouth of the St. Lawrence River, reaching the Gaspé Peninsula and across Chaleur Bay. From the Escuminac center on the Magdalen Shelf, flowed onto the Acadian Peninsula of New Brunswick and southeastward, onto the Gaspe, burying the western end of Prince Edward Island and reached the head of Bay of Fundy. From the Gaspereau center, on the divide crossing New Brunswick flowed into the Bay of Fundy and Chaleur Bay. [9]

In New York, the ice that covered Manhattan was about 2,000 feet high before it began to melt in about 16,000 BC. The ice in the area disappeared around 10,000 BC. The ground in the New York area has since risen by more than 150 ft because of the removal of the enormous weight of the melted ice. [10]

Baffin ice flow

The Baffin ice sheet was circular and centered over the Foxe Basin. A major divide across the basin, created a westward flow across the Melville Peninsula, from an eastward flow over Baffin Island and Southampton Island. Across southern Baffin Island, two divides created four additional lobes. The Penny Ice Divide split the Cumberland Peninsula, where Pangnirtung created flow toward Home Bay on the north and Cumberland Sound on the south. The Amadjuak Ice Divide on the Hall Peninsula, where Iqaluit sits created a north flow into Cumberland Sound and a south flow into the Hudson Strait. A secondary Hall Ice Divide formed a link to a local ice cap on the Hall Peninsula. The current ice caps on Baffin Island are thought to be a remnant from this time period, but it was not a part of the Baffin ice flow, but an autonomous flow. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Lake Agassiz</span> Large lake in central North America at the end of the last glacial period

Lake Agassiz was a large proglacial lake that existed in central North America during the late Pleistocene, fed by meltwater from the retreating Laurentide Ice Sheet at the end of the last glacial period. At its peak, the lake's area was larger than all of the modern Great Lakes combined.

<span class="mw-page-title-main">Wisconsin glaciation</span> North American glacial ice sheet

The Wisconsin glaciation, also called the Wisconsin glacial episode, was the most recent glacial period of the North American ice sheet complex, peaking more than 20,000 years ago. This advance included the Cordilleran Ice Sheet, which nucleated in the northern North American Cordillera; the Innuitian ice sheet, which extended across the Canadian Arctic Archipelago; the Greenland ice sheet; and the massive Laurentide Ice Sheet, which covered the high latitudes of central and eastern North America. This advance was synchronous with global glaciation during the last glacial period, including the North American alpine glacier advance, known as the Pinedale glaciation. The Wisconsin glaciation extended from approximately 75,000 to 11,000 years ago, between the Sangamonian Stage and the current interglacial, the Holocene. The maximum ice extent occurred approximately 25,000–21,000 years ago during the last glacial maximum, also known as the Late Wisconsin in North America.

<span class="mw-page-title-main">Last Glacial Period</span> Period of major glaciations of the Northern Hemisphere (115,000–12,000 years ago)

The Last Glacial Period (LGP), also known colloquially as the Last Ice Age or simply the Ice Age, occurred from the end of the Last Interglacial to the end of the Younger Dryas, encompassing the period c. 115,000 – c. 11,700 years ago.

<span class="mw-page-title-main">Torngat Mountains</span> Mountain range in eastern Canada

The Torngat Mountains are a mountain range on the Labrador Peninsula at the northern tip of Newfoundland and Labrador and eastern Quebec. They are part of the Arctic Cordillera. The mountains form a peninsula that separates Ungava Bay from the Atlantic Ocean.

<span class="mw-page-title-main">Labrador Current</span> Cold current in the Atlantic ocean along the coasts of Labrador, Newfoundland and Nova Scotia

The Labrador Current is a cold current in the North Atlantic Ocean which flows from the Arctic Ocean south along the coast of Labrador and passes around Newfoundland, continuing south along the east coast of Canada near Nova Scotia. Near Nova Scotia, this cold water current meets the warm northward moving Gulf Stream. The combination of these two currents produces heavy fogs and has also created one of the richest fishing grounds in the world.

<span class="mw-page-title-main">Cordilleran ice sheet</span> Major ice sheet that periodically covered large parts of North America during glacial periods

The Cordilleran ice sheet was a major ice sheet that periodically covered large parts of North America during glacial periods over the last ~2.6 million years.

The Tyrrell Sea, named after Canadian geologist Joseph Tyrrell, is another name for prehistoric Hudson Bay, namely as it existed during the retreat of the Laurentide Ice Sheet.

<span class="mw-page-title-main">Tunnel valley</span> Glacial-formed geographic feature

A tunnel valley is a U-shaped valley originally cut under the glacial ice near the margin of continental ice sheets such as that now covering Antarctica and formerly covering portions of all continents during past glacial ages. They can be as long as 100 km (62 mi), 4 km (2.5 mi) wide, and 400 m (1,300 ft) deep.

<span class="mw-page-title-main">Glacial history of Minnesota</span>

The glacial history of Minnesota is most defined since the onset of the last glacial period, which ended some 10,000 years ago. Within the last million years, most of the Midwestern United States and much of Canada were covered at one time or another with an ice sheet. This continental glacier had a profound effect on the surface features of the area over which it moved. Vast quantities of rock and soil were scraped from the glacial centers to its margins by slowly moving ice and redeposited as drift or till. Much of this drift was dumped into old preglacial river valleys, while some of it was heaped into belts of hills at the margin of the glacier. The chief result of glaciation has been the modification of the preglacial topography by the deposition of drift over the countryside. However, continental glaciers possess great power of erosion and may actually modify the preglacial land surface by scouring and abrading rather than by the deposition of the drift.

Lake Bassano was a proglacial lake that formed in the Late Pleistocene during the deglaciation of south-central Alberta by the impoundment of a re-established drainage system and addition of glacial meltwater. It is associated with the development of through-flowing drainage within the Red Deer River basin in particular, and the South Saskatchewan drainage network in general. Approximately 7,500 square kilometres (2,900 sq mi) of the Bassano basin is covered with lacustrine sediments. These sediments are bordered by the topographically higher Buffalo Lake Moraine to the west, the Suffield Moraine to the east and the Lethbridge Moraine to the south.

<span class="mw-page-title-main">Boulder Park</span>

Boulder Park National Natural Landmark, of Douglas County, Washington, along with the nearby McNeil Canyon Haystack Rocks and Sims Corner Eskers and Kames natural landmarks, illustrate well-preserved examples of classic Pleistocene ice stagnation landforms that are found in Washington. These landforms include numerous glacial erratics and haystack rocks that occur near and on the Withrow Moraine, which is the terminal moraine of the Okanogan ice lobe.

<span class="mw-page-title-main">Glacial Lake Columbia</span> Former lake in North America

Glacial Lake Columbia was the lake formed on the ice-dammed Columbia River behind the Okanogan lobe of the Cordilleran Ice Sheet when the lobe covered 500 square miles (1,300 km2) of the Waterville Plateau west of Grand Coulee in central Washington state during the Wisconsin glaciation. Lake Columbia was a substantially larger version of the modern-day lake behind the Grand Coulee Dam. Lake Columbia's overflow – the diverted Columbia River – drained first through Foster Coulee, and as the ice dam grew, then through Moses Coulee, and finally, the Grand Coulee.

<span class="mw-page-title-main">Shonkin Sag</span>

The Shonkin Sag is a prehistoric fluvioglacial landform located along the northern edge of the Highwood Mountains in the state of Montana in the United States. The Sag is a river channel formed by the Missouri River and glacial meltwater pouring from Glacial Lake Great Falls. It is one of the most famous prehistoric meltwater channels in the world.

<span class="mw-page-title-main">Geology of New England</span> Overview of the geology of New England

New England is a region in the North Eastern United States consisting of the states Rhode Island, Connecticut, Massachusetts, New Hampshire, Vermont, and Maine. Most of New England consists geologically of volcanic island arcs that accreted onto the eastern edge of the Laurentian Craton in prehistoric times. Much of the bedrock found in New England is heavily metamorphosed due to the numerous mountain building events that occurred in the region. These events culminated in the formation of Pangaea; the coastline as it exists today was created by rifting during the Jurassic and Cretaceous periods. The most recent rock layers are glacial conglomerates.

The phenomenon of paleoflooding is apparent in the geologic record over various spatial and temporal scales. It often occurred on a large scale, and was the result of either glacial ice melt causing large outbursts of freshwater, or high sea levels breaching bodies of freshwater. If a freshwater outflow event was large enough that the water reached the ocean system, it caused changes in salinity that potentially affected ocean circulation and global climate. Freshwater flows could also accumulate to form continental glacial lakes, and this is another indicator of large-scale flooding. In contrast, periods of high global sea level could cause marine water to breach natural dams and flow into bodies of freshwater. Changes in salinity of freshwater and marine bodies can be detected from the analysis of organisms that inhabited those bodies at a given time, as certain organisms are more suited to live in either fresh or saline conditions.

<span class="mw-page-title-main">Vashon Glaciation</span>

The Vashon Glaciation, Vashon Stadial or Vashon Stade is a local term for the most recent period of very cold climate in which during its peak, glaciers covered the entire Salish Sea as well as present day Seattle, Tacoma, Olympia and other surrounding areas in the western part of present-day Washington (state) of the United States of America. This occurred during a cold period around the world known as the last glacial period. This was the most recent cold period of the Quaternary glaciation, the time period in which the arctic ice sheets have existed. The Quaternary Glaciation is part of the Late Cenozoic Ice Age, which began 33.9 million years ago and is ongoing. It is the time period in which the Antarctic ice cap has existed.

<span class="mw-page-title-main">Lake Glendive</span> Glacial lake (former) in Dawson and Prairie, Montana

Glacial Lake Glendive was a glacial lake on the lower Yellowstone River. It formed in the valley of Yellowstone, during the late Pleistocene epoch south of the Keewatin Ice Sheet. As the ice sheet retreated northward, the lake drained into the modern Missouri River.

The Keewatin ice sheet was a major ice sheet that periodically covered large parts of North America during glacial periods over the last ~2.6 million years. This included the following areas:

The Baffin ice sheet was the most northerly portion of the Laurentide Ice Sheet, centered in the Foxe Basin between Baffin Island and the Melville Peninsula north of Hudson Bay. Blocked from a southward flow by the Keewatin and Labrador Ice sheets, it moved north and eastward across Baffin Island into the Baffin Sound. Two smaller ice domes formed along the island chain of the Sound as the Barnes Dome, Penny Dome and the Amadjuak Dome.

The Labrador ice sheet was a major ice sheet that periodically covered large parts of North America during glacial periods over the last ~2.6 million years. The seam between the two ice sheets passed over the northern tip of the Ugava Peninsula passing south across Hudson Bay and on to the Ontario shore near Fort Stevens. This seam continued southward across Lake Superior, east of the Keweenaw Peninsula of Michigan. Southward into Wisconsin, along the Lake Michigan shoreline, crossing into western Illinois. Reaching down the Mississippi River valley to its junction with the Missouri River, it reaches its most southern point. At this point, the ice sheet no longer abuts the Keewatin ice sheet.

References

  1. 1 2 Lacelle, D.; Fisher, D. A.; Coulombe, S.; et al. (5 September 2018). "Buried remnants of the Laurentide Ice Sheet and connections to its surface elevation". Scientific Reports 8, 13286 (2018). doi:10.1038/s41598-018-31166-2.
  2. "Stratigraphic Chart 2022" (PDF). International Stratigraphic Commission. February 2022. Retrieved 4 June 2022.
  3. Dyke, A. S.; Prest, V. K. (1987). "Late Wisconsinan and Holocene History of the Laurentide Ice Sheet". Géographie Physique et Quaternaire. 41 (2): 237–263. doi:10.7202/032681ar.
  4. Flint, R.F. 1971. Glacial and Quaternary Geology. Wiley and Sons, NY. p. 892.
  5. Murton, J.B.; Bateman, M.D.; Dallimore, S.R; Teller, J.T.; Yang, Z. (2010). "Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean". Nature. 464 (7289): 740–743. Bibcode:2010Natur.464..740M. doi:10.1038/nature08954. PMID   20360738. S2CID   4425933.
  6. Broecker, W.S.; Denton, G.H. (1989). "The role of ocean-atmosphere reorganizations in glacial cycles". Geochimica et Cosmochimica Acta. 53 (10): 2465–2501. Bibcode:1989GeCoA..53.2465B. doi:10.1016/0016-7037(89)90123-3.
  7. Margold, Marin; Stokes, Chris R.; Clark, Chris D. (1 June 2018). "Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet". Quaternary Science Reviews . 189: 1–30. Bibcode:2018QSRv..189....1M. doi: 10.1016/j.quascirev.2018.03.013 . S2CID   53511921.
  8. 1 2 3 4 Geologic Framework and Glaciation of the Central Area, 1-1-2006; Christopher L. Hill; Boise State University, Boise, Idaho; 2006.
  9. 1 2 3 4 Late Wisconsinan and Holocene History of the Laurentide Ice Sheet, 10.7202/032681ar; Arthur S. Dyke, Victor K. Prest; Geological Survey of Canada; Ottawa, Ontario; 1987; http://id.erudit.org/iderudit/032681ar.
  10. William J. Broad (5 June 2018). "How the Ice Age Shaped New York". The New York Times. Retrieved 24 February 2019. the ice was about 2,000 feet thick over Manhattan

Further reading