Supraglacial lake

Last updated
A supraglacial lake on the surface of the Bering Glacier in 1995. Supraglacial lake.jpg
A supraglacial lake on the surface of the Bering Glacier in 1995.

A supraglacial lake is any pond of liquid water on the top of a glacier. Although these pools are ephemeral, they may reach kilometers in diameter and be several meters deep. They may last for months or even decades at a time, but can empty in the course of hours.

Contents

Lifetime

Lakes may be created by surface melting during summer months, or over the period of years by rainfall, such as monsoons. They may dissipate by overflowing their banks, or creating a moulin.

Effects on ice masses

Lakes of a diameter greater than ~300 m are capable of driving a fluid-filled crevasse to the glacier/bed interface, through the process of hydrofracture. A surface-to-bed connection made in this way is referred to as a moulin. When these crevasses form, it can take a mere 2–18 hours to empty a lake, supplying warm water to the base of the glacier - lubricating the bed and causing the glacier to surge. [1] The rate of emptying such a lake is equivalent to the rate of flow of the Niagara Falls. Such crevasses, when forming on ice shelves, may penetrate to the underlying ocean and contribute to the breakup of the ice shelf. [2]

Supraglacial lakes also have a warming effect on the glaciers; having a lower albedo than ice, the water absorbs more of the sun's energy, causing warming and (potentially) further melting.

Context

Supraglacial lakes can occur in all glaciated areas.

The retreating glaciers of the Himalaya produce vast and long lived lakes, many kilometres in diameter and scores of metres deep. [3] These may be bounded by moraines; some are deep enough to be density stratified. [3] Most have been growing since the 1950s; the glaciers have been retreating constantly since then. [3]

A proliferation of supraglacial lakes preceded the collapse of the Antarctic Larsen B ice shelf in 2001,[ citation needed ] and may have been connected.[ citation needed ]

Such lakes are also prominent in Greenland, where they have recently been understood to contribute somewhat to ice movement.

Sediments

Accumulated supraglacial debris, Ngozumpa glacier. Ngozumpa Glacier, Lake, Nepal.jpg
Accumulated supraglacial debris, Ngozumpa glacier.

Sedimentary particles often accumulate in supraglacial lakes; they are washed in by the meltwater or rainwater that supplies the lakes. [4] The character of the sediment depends upon this water source, as well as the proximity of a sampled area to both the edge of the glacier and the edge of the lake. [4] The amount of debris atop the glacier also has a large effect. [4] Naturally, long lived lakes have a different sedimentary record to shorter lived pools. [4]

Sediments are dominated by coarser (coarse sand/gravel) fragments, and the accumulation rate can be immense: up to 1 metre per year near the shores of larger lakes. [4]

Upon melting of the glacier, deposits may be preserved as superglacial till (alias supraglacial moraine).

Effect of global warming

Greenland Ice Sheet

It was once unclear whether global warming is increasing the abundance of supraglacial lakes on the Greenland Ice Sheet. [5] However, recent research has shown that supraglacial lakes have been forming in new areas. In fact, satellite photos show that since the 1970s, when satellite measurements began, supraglacial lakes have been forming at steadily higher elevations on the ice sheet as warmer air temperatures have caused melting to occur at steadily higher elevations. [6] However, satellite imagery and remote sensing data also reveal that high-elevation lakes rarely form new moulins there. [7] Thus, the role of supraglacial lakes in the basal hydrology of the ice sheet is unlikely to change in the near future: they will continue to bring water to the bed by forming moulins within a few tens of kilometers of the coast.

Himalaya

A supraglacial lake on the surface of the Ngozumpa glacier. Ngozumpa Glacier, Pond, Nepal.jpg
A supraglacial lake on the surface of the Ngozumpa glacier.

Climate change is having a more severe effect on supraglacial lakes on mountain glaciers. In the Himalaya, many glaciers are covered by a thick layer of rocks, dirt, and other debris; this debris layer insulates the ice from the warmth of the sun, allowing more ice to stay solid when air temperatures rise above the melting point. Water collecting on the ice surface has the opposite effect, due to its high albedo as described in a previous section. Thus, more supraglacial lakes lead to a vicious cycle of more melting and more supraglacial lakes. [8] A good example is the Ngozumpa glacier, the longest glacier in the Himalayas, which counts numerous supraglacial lakes.

The drainage of supraglacial lakes on mountain glaciers can disrupt the internal plumbing structure of the glacier. Natural events such as landslides or the slow melting of a frozen moraine can incite drainage of a supraglacial lake, creating a glacial lake outburst flood. In such a flood, the lake water releases rushes down a valley. These events are sudden and catastrophic and thus provide little warning to people who live downstream, in the path of the water. In Himalayan regions, villages cluster around water sources, such as proglacial streams; these streams are the same pathways the glacial lake outburst floods travel down.

Related Research Articles

<span class="mw-page-title-main">Glacier</span> Persistent body of ice that is moving under its own weight

A glacier is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

<span class="mw-page-title-main">Moraine</span> Glacially formed accumulation of debris

A moraine is any accumulation of unconsolidated debris, sometimes referred to as glacial till, that occurs in both currently and formerly glaciated regions, and that has been previously carried along by a glacier or ice sheet. It may consist of partly rounded particles ranging in size from boulders down to gravel and sand, in a groundmass of finely-divided clayey material sometimes called glacial flour. Lateral moraines are those formed at the side of the ice flow, and terminal moraines were formed at the foot, marking the maximum advance of the glacier. Other types of moraine include ground moraines and medial moraines.

<span class="mw-page-title-main">Till</span> Unsorted glacial sediment

Till or glacial till is unsorted glacial sediment.

<span class="mw-page-title-main">Crevasse</span> A deep crack, or fracture, in an ice sheet or glacier

A crevasse is a deep crack that forms in a glacier or ice sheet. Crevasses form as a result of the movement and resulting stress associated with the shear stress generated when two semi-rigid pieces above a plastic substrate have different rates of movement. The resulting intensity of the shear stress causes a breakage along the faces.

<span class="mw-page-title-main">Jökulhlaup</span> Type of glacial outburst flood

A jökulhlaup is a type of glacial outburst flood. It is an Icelandic term that has been adopted in glaciological terminology in many languages. It originally referred to the well-known subglacial outburst floods from Vatnajökull, Iceland, which are triggered by geothermal heating and occasionally by a volcanic subglacial eruption, but it is now used to describe any large and abrupt release of water from a subglacial or proglacial lake/reservoir.

<span class="mw-page-title-main">Glacial erratic</span> Piece of rock that has been moved by a glacier

A glacial erratic is a glacially deposited rock differing from the type of rock native to the area in which it rests. Erratics, which take their name from the Latin word errare, are carried by glacial ice, often over distances of hundreds of kilometres. Erratics can range in size from pebbles to large boulders such as Big Rock in Alberta.

<span class="mw-page-title-main">Glacial motion</span> Geological phenomenon

Glacial motion is the motion of glaciers, which can be likened to rivers of ice. It has played an important role in sculpting many landscapes. Most lakes in the world occupy basins scoured out by glaciers. Glacial motion can be fast or slow, but is typically around 25 centimetres per day (9.8 in/d).

<span class="mw-page-title-main">Glacial lake</span> Lake formed by a melted glacier

A glacial lake is a body of water with origins from glacier activity. They are formed when a glacier erodes the land and then melts, filling the depression created by the glacier.

<span class="mw-page-title-main">Melt pond</span> Pools of open water that form on sea ice in the warmer months of spring and summer

Melt ponds are pools of open water that form on sea ice in the warmer months of spring and summer. The ponds are also found on glacial ice and ice shelves. Ponds of melted water can also develop under the ice, which may lead to the formation of thin underwater ice layers called false bottoms.

<span class="mw-page-title-main">Ice stream</span> A region of fast-moving ice within an ice sheet

An ice stream is a region of fast-moving ice within an ice sheet. It is a type of glacier, a body of ice that moves under its own weight. They can move upwards of 1,000 metres (3,300 ft) a year, and can be up to 50 kilometres (31 mi) in width, and hundreds of kilometers in length. They tend to be about 2 km (1.2 mi) deep at the thickest, and constitute the majority of the ice that leaves the sheet. In Antarctica, the ice streams account for approximately 90% of the sheet's mass loss per year, and approximately 50% of the mass loss in Greenland.

<span class="mw-page-title-main">Moulin (geomorphology)</span> Shaft within a glacier or ice sheet which water enters from the surface

A moulin is a roughly circular, vertical well-like shaft formed where a surface meltstream exploits a weakness in the ice. The term is derived from the French word for mill.

<span class="mw-page-title-main">Glacial lake outburst flood</span> Type of outburst flood that occurs when the dam containing a glacial lake fails

A glacial lake outburst flood (GLOF) is a type of outburst flood caused by the failure of a dam containing a glacial lake. An event similar to a GLOF, where a body of water contained by a glacier melts or overflows the glacier, is called a jökulhlaup. The dam can consist of glacier ice or a terminal moraine. Failure can happen due to erosion, a buildup of water pressure, an avalanche of rock or heavy snow, an earthquake or cryoseism, volcanic eruptions under the ice, or massive displacement of water in a glacial lake when a large portion of an adjacent glacier collapses into it.

<span class="mw-page-title-main">Tunnel valley</span> Glacial-formed geographic feature

A tunnel valley is a U-shaped valley originally cut under the glacial ice near the margin of continental ice sheets such as that now covering Antarctica and formerly covering portions of all continents during past glacial ages. They can be as long as 100 km (62 mi), 4 km (2.5 mi) wide, and 400 m (1,300 ft) deep.

Glacial surges are short-lived events where a glacier can advance substantially, moving at velocities up to 100 times faster than normal. Surging glaciers cluster around a few areas. High concentrations of surging glaciers occur in the Karakoram, Pamir Mountains, Svalbard, the Canadian Arctic islands, Alaska and Iceland, although overall it is estimated that only one percent of all the world's glaciers ever surge. In some glaciers, surges can occur in fairly regular cycles, with 15 to 100 or more surge events per year. In other glaciers, surging remains unpredictable. In some glaciers, however, the period of stagnation and build-up between two surges typically lasts 10 to 200 years and is called the quiescent phase. During this period the velocities of the glacier are significantly lower, and the glaciers can retreat substantially.

<span class="mw-page-title-main">Rogen moraine</span> Landform of ridges deposited by a glacier or ice sheet transverse to ice flow

A Rogen moraine is a subglacially formed type of moraine landform, that mainly occurs in Fennoscandia, Scotland, Ireland and Canada. It is one of the three main types of hummocky moraines. They cover large areas that have been covered by ice, and occur mostly in what is believed to have been the central areas of the ice sheets. Rogen moraines are named after Lake Rogen in Härjedalen, Sweden, the landform's type locality. Rogen Nature Reserve serves to protect the unusual area.

<span class="mw-page-title-main">Subglacial eruption</span> Eruption of an ice-covered volcano

Subglacial eruptions, those of ice-covered volcanoes, result in the interaction of magma with ice and snow, leading to meltwater formation, jökulhlaups, and lahars. Flooding associated with meltwater is a significant hazard in some volcanic areas, including Iceland, Alaska, and parts of the Andes. Jökulhlaups have been identified as the most frequently occurring volcanic hazard in Iceland, with major events where peak discharges of meltwater can reach 10,000 – 100,000 m3/s occurring when there are large eruptions beneath glaciers. It is important to explore volcano-ice interactions to improve the effectiveness of monitoring these events and to undertake hazard assessments. This is particularly relevant given that subglacial eruptions have demonstrated their ability to cause widespread impact, with the ash cloud associated with Iceland's Eyjafjallajökull eruption in 2010 resulting in significant impacts to aviation across Europe.

Fluvioglacial landforms or glaciofluvial landforms are those that result from the associated erosion and deposition of sediments caused by glacial meltwater. Glaciers contain suspended sediment loads, much of which is initially picked up from the underlying landmass. Landforms are shaped by glacial erosion through processes such as glacial quarrying, abrasion, and meltwater. Glacial meltwater contributes to the erosion of bedrock through both mechanical and chemical processes. Fluvio-glacial processes can occur on the surface and within the glacier. The deposits that happen within the glacier are revealed after the entire glacier melts or partially retreats. Fluvio-glacial landforms and erosional surfaces include: outwash plains, kames, kame terraces, kettle holes, eskers, varves, and proglacial lakes.

<span class="mw-page-title-main">Ice-sheet dynamics</span> Technical explanation of ice motion within large bodies of ice

Ice sheet dynamics describe the motion within large bodies of ice such as those currently on Greenland and Antarctica. Ice motion is dominated by the movement of glaciers, whose gravity-driven activity is controlled by two main variable factors: the temperature and the strength of their bases. A number of processes alter these two factors, resulting in cyclic surges of activity interspersed with longer periods of inactivity, on both hourly and centennial time scales. Ice-sheet dynamics are of interest in modelling future sea level rise.

<span class="mw-page-title-main">Overdeepening</span> Characteristic of basins and valleys eroded by glaciers

Overdeepening is a characteristic of basins and valleys eroded by glaciers. An overdeepened valley profile is often eroded to depths which are hundreds of metres below the lowest continuous surface line along a valley or watercourse. This phenomenon is observed under modern day glaciers, in salt-water fjords and fresh-water lakes remaining after glaciers melt, as well as in tunnel valleys which are partially or totally filled with sediment. When the channel produced by a glacier is filled with debris, the subsurface geomorphic structure is found to be erosionally cut into bedrock and subsequently filled by sediments. These overdeepened cuts into bedrock structures can reach a depth of several hundred metres below the valley floor.

Subglacial streams are conduits of glacial meltwater that flow at the base of glaciers and ice caps. Meltwater from the glacial surface travels downward throughout the glacier, forming an englacial drainage system consisting of a network of passages that eventually reach the bedrock below, where they form subglacial streams. Subglacial streams form a system of tunnels and interlinked cavities and conduits, with water flowing under extreme pressures from the ice above; as a result, flow direction is determined by the pressure gradient from the ice and the topography of the bed rather than gravity. Subglacial streams form a dynamic system that is responsive to changing conditions, and the system can change significantly in response to seasonal variation in meltwater and temperature. Water from subglacial streams is routed towards the glacial terminus, where it exits the glacier. Discharge from subglacial streams can have a significant impact on local, and in some cases global, environmental and geological conditions. Sediments, nutrients, and organic matter contained in the meltwater can all influence downstream and marine conditions. Climate change may have a significant impact on subglacial stream systems, increasing the volume of meltwater entering subglacial drainage systems and influencing their hydrology.

References

  1. Krawczynski, M.J.; Behn, M.D.; Das, S.B.; Joughin, I. (2007). "Constraints on melt-water flux through the West Greenland ice-sheet: modeling of hydro-fracture drainage of supraglacial lakes". Eos Trans. AGU. Vol. 88. pp. Fall Meet. Suppl., Abstract C41B–0474. Archived from the original on 2012-12-28. Retrieved 2008-03-04.
  2. Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; Zhang, T. (2007). "Observations: Changes in Snow, Ice and Frozen Ground" (PDF). In Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (eds.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  3. 1 2 3 Chikita, K.; Jha, J.; Yamada, T. (2001). "Sedimentary effects on the expansion of a Himalayan supraglacial lake". Global and Planetary Change. 28 (1–4): 23–34. doi:10.1016/S0921-8181(00)00062-X.
  4. 1 2 3 4 5 Syverson, K.M. (1998). "Sediment record of short-lived ice-contact lakes, Burroughs Glacier, Alaska". Boreas. 27 (1): 44–54. doi:10.1111/j.1502-3885.1998.tb00866.x. S2CID   129000793 . Retrieved 2008-03-04.
  5. Details of supraglacial lake research from Sarah Das, a specialist. Contains images.
  6. Howat, I M, S de la Peña, J H van Angelen, J T M Lenaerts, and M R van den Broeke. 2013. “Expansion of Meltwater Lakes on the Greenland Ice Sheet.” The Cryosphere 7 (1). doi:10.5194/tc-7-201-2013.
  7. Poinar, K, I Joughin, S B Das, and M D Behn. 2015. “Limits to Future Expansion of Surface‐Melt‐Enhanced Ice Flow Into the Interior of Western Greenland.” Geophysical Research Letters. doi:10.1002/2015GL063192.
  8. Benn, D I, T Bolch, K Hands, J Gulley, A Luckman, L I Nicholson, D Quincey, S Thompson, R Toumi, and S Wiseman. 2012. “Response of Debris-Covered Glaciers in the Mount Everest Region to Recent Warming, and Implications for Outburst Flood Hazards.” Earth-Science Reviews 114 (1-2). Elsevier B.V.: 156–74. doi:10.1016/j.earscirev.2012.03.008.