Surge (glacier)

Last updated

Glacial surges are short-lived events where a glacier can advance substantially, moving at velocities up to 100 times faster than normal. Surging glaciers cluster around a few areas. High concentrations of surging glaciers occur in the Karakoram, [1] Pamir Mountains, [2] Svalbard, the Canadian Arctic islands, Alaska and Iceland, although overall it is estimated that only one percent of all the world's glaciers ever surge. [3] In some glaciers, surges can occur in fairly regular cycles, with 15 to 100 or more surge events per year. In other glaciers, surging remains unpredictable. [4] In some glaciers, however, the period of stagnation and build-up between two surges typically lasts 10 to 200 years and is called the quiescent phase. [5] During this period the velocities of the glacier are significantly lower, and the glaciers can retreat substantially.

Contents

Types

Glacier surges have been divided into two categories depending on the character of the surge event. Glaciers in Alaska exhibit surges with a sudden onset, an extremely high maximum flow rate (tens of meters/day) and a sudden termination, often with a discharge of stored water. These are called Alaskan-type surges and it is suspected that these surges are hydrologically controlled. [6]

Surges in Svalbard typically exhibit different behavior. Svalbard surges are typically associated with slower onset with an acceleration phase, rising to a maximum velocity which is typically slower (up to four or five meters per day) than Alaskan surges, and a return to quiescence often taking years. [7] [8] Features observed during the active or surge phase include potholes, known as lacunas [9] and medial moraines. [10]

Examples of events

In the Norwegian Arctic, Svalbard is an archipelago containing hundreds of glaciers. Svalbard is more than 60% covered by glaciers [11] and of these glaciers, hundreds have been observed to surge. [5]

Glacial surges in the Karakoram occur in the presence of "extreme uplift and denudation." [5]

In 1980, there were several mini-surges of Variegated Glacier in Alaska. Mini surges typically show lag times of basal flow of 5–10 hours, which correlates to differences between the surging part of a glacier and the output of water and sediment. [12] When the 1982 surge ended on July 5, there was a large flood event that day, and more flooding in the following days. What Humphrey found in his study is that behind the glacial surge zone, there are predominantly low basal water velocities, and high sliding rates before the rapid release of large quantities of water. [12]

Causes

There have been many theories of why glacial surges occur.

Hydrological control

Surges may be caused by the supply of meltwater to the base of a glacier. Meltwater is important in reducing frictional forces to glacial ice flow. The distribution and pressure of water at the bed modulates the glacier's velocity and therefore mass balance. Meltwater may come from a number of sources, including supraglacial lakes, geothermal heating of the bed, conduction of heat into the glacier and latent heat transfers. There is a positive feedback between velocity and friction at the bed, high velocities will generate more frictional heat and create more meltwater. Crevassing is also enhanced by greater velocity flow which will provide further rapid transmission paths for meltwater flowing towards the bed. However, Humphrey found no precise correlation between ice-slow down and the release of water inside of a glacier. [12]

The evolution of the drainage system under the glacier plays a key role in surge cycles.

Thermal regime

Glaciers that exhibit surges like those in Svalbard; with slower onset phase, and a longer termination phase may be thermally controlled rather than hydrologically controlled. [13] [7] These surges tend to last for longer periods of time than hydrologically controlled surges.

Deformable bed hypothesis

In other cases, the geology of the underlying country rock may dictate surge frequency.[ citation needed ] For example, poorly consolidated sedimentary rocks are more prone to failure under stress; a sub-glacial "landslip" may permit the glacier to slide. This explains why surging glaciers tend to cluster[ citation needed ] in certain areas.

Critical mass

Meier and Post [14] suggest that once mass accumulates to a critical point, basal melting begins to occur. This provides a buoyancy force, "lifting" the glacier from the bed and reducing the friction force.

Related Research Articles

<span class="mw-page-title-main">Erosion</span> Natural processes that remove soil and rock

Erosion is the action of surface processes that removes soil, rock, or dissolved material from one location on the Earth's crust and then transports it to another location where it is deposited. Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by dissolution. Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres.

<span class="mw-page-title-main">Glacier</span> Persistent body of ice that is moving under its own weight

A glacier is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

<span class="mw-page-title-main">Drumlin</span> Elongated hill formed by glacial action

A drumlin, from the Irish word droimnín, first recorded in 1833, in the classical sense is an elongated hill in the shape of an inverted spoon or half-buried egg formed by glacial ice acting on underlying unconsolidated till or ground moraine. Assemblages of drumlins are referred to as fields or swarms; they can create a landscape which is often described as having a 'basket of eggs topography'.

<span class="mw-page-title-main">Glaciology</span> Scientific study of ice and natural phenomena involving ice

Glaciology is the scientific study of glaciers, or, more generally, ice and natural phenomena that involve ice.

<span class="mw-page-title-main">Crevasse</span> A deep crack, or fracture, in an ice sheet or glacier

A crevasse is a deep crack that forms in a glacier or ice sheet. Crevasses form as a result of the movement and resulting stress associated with the shear stress generated when two semi-rigid pieces above a plastic substrate have different rates of movement. The resulting intensity of the shear stress causes a breakage along the faces.

<span class="mw-page-title-main">Jökulhlaup</span> Type of glacial outburst flood

A jökulhlaup is a type of glacial outburst flood. It is an Icelandic term that has been adopted in glaciological terminology in many languages. It originally referred to the well-known subglacial outburst floods from Vatnajökull, Iceland, which are triggered by geothermal heating and occasionally by a volcanic subglacial eruption, but it is now used to describe any large and abrupt release of water from a subglacial or proglacial lake/reservoir.

<span class="mw-page-title-main">Outwash plain</span> Plain formed from glacier sediment transported by meltwater

An outwash plain, also called a sandur, sandr or sandar, is a plain formed of glaciofluvial deposits due to meltwater outwash at the terminus of a glacier. As it flows, the glacier grinds the underlying rock surface and carries the debris along. The meltwater at the snout of the glacier deposits its load of sediment over the outwash plain, with larger boulders being deposited near the terminal moraine, and smaller particles travelling further before being deposited. Sandurs are common in Iceland where geothermal activity accelerates the melting of ice flows and the deposition of sediment by meltwater.

<span class="mw-page-title-main">Ice cap</span> Ice mass that covers less than 50,000 km² of land area

In glaciology, an ice cap is a mass of ice that covers less than 50,000 km2 (19,000 sq mi) of land area. Larger ice masses covering more than 50,000 km2 (19,000 sq mi) are termed ice sheets.

<span class="mw-page-title-main">Plucking (glaciation)</span> Glacial erosion of bedrock

Plucking, also referred to as quarrying, is a glacial phenomenon that is responsible for the weathering and erosion of pieces of bedrock, especially large "joint blocks". This occurs in a type of glacier called a "valley glacier". As a glacier moves down a valley, friction causes the basal ice of the glacier to melt and infiltrate joints (cracks) in the bedrock. The freezing and thawing action of the ice enlarges, widens, or causes further cracks in the bedrock as it changes volume across the ice/water phase transition, gradually loosening the rock between the joints. This produces large chunks of rock called joint blocks. Eventually these joint blocks come loose and become trapped in the glacier.

The Holocene glacial retreat is a geographical phenomenon that involved the global retreat of glaciers (deglaciation) that previously had advanced during the Last Glacial Maximum. Ice sheet retreat initiated ca. 19,000 years ago and accelerated after ca. 15,000 years ago. The Holocene, starting with abrupt warming 11,700 years ago, resulted in rapid melting of the remaining ice sheets of North America and Europe.

<span class="mw-page-title-main">Tunnel valley</span> Glacial-formed geographic feature

A tunnel valley is a U-shaped valley originally cut under the glacial ice near the margin of continental ice sheets such as that now covering Antarctica and formerly covering portions of all continents during past glacial ages. They can be as large as 100 km (62 mi), 4 km (2.5 mi) wide, and 400 m (1,300 ft) deep.

<span class="mw-page-title-main">Retreat of glaciers since 1850</span> Shortening of glaciers by melting

The retreat of glaciers since 1850 is well documented and is one of the effects of climate change. The retreat of mountain glaciers, notably in western North America, Asia, the Alps and tropical and subtropical regions of South America, Africa and Indonesia, provide evidence for the rise in global temperatures since the late 19th century. The acceleration of the rate of retreat since 1995 of key outlet glaciers of the Greenland and West Antarctic ice sheets may foreshadow a rise in sea level, which would affect coastal regions. Excluding peripheral glaciers of ice sheets, the total cumulated global glacial losses over the 26-year period from 1993 to 2018 were likely 5500 gigatons, or 210 gigatons per yr.

Radioglaciology is the study of glaciers, ice sheets, ice caps and icy moons using ice penetrating radar. It employs a geophysical method similar to ground-penetrating radar and typically operates at frequencies in the MF, HF, VHF and UHF portions of the radio spectrum. This technique is also commonly referred to as "Ice Penetrating Radar (IPR)" or "Radio Echo Sounding (RES)".

<span class="mw-page-title-main">Meltwater</span> Water released by the melting of snow or ice

Meltwater is water released by the melting of snow or ice, including glacial ice, tabular icebergs and ice shelves over oceans. Meltwater is often found during early spring when snow packs and frozen rivers melt with rising temperatures, and in the ablation zone of glaciers where the rate of snow cover is reducing. Meltwater can be produced during volcanic eruptions, in a similar way in which the more dangerous lahars form. It can also be produced by the heat generated by the flow itself.

<span class="mw-page-title-main">Abrasion (geology)</span> Process of erosion

Abrasion is a process of erosion that occurs when material being transported wears away at a surface over time, commonly happens in ice and glaciers. The primary process of abrasion is physical weathering. Its the process of friction caused by scuffing, scratching, wearing down, marring, and rubbing away of materials. The intensity of abrasion depends on the hardness, concentration, velocity and mass of the moving particles. Abrasion generally occurs in four ways: glaciation slowly grinds rocks picked up by ice against rock surfaces; solid objects transported in river channels make abrasive surface contact with the bed and walls; objects transported in waves breaking on coastlines; and by wind transporting sand or small stones against surface rocks. Abrasion is the natural scratching of bedrock by a continuous movement of snow or glacier downhill. This is caused by a force, friction, vibration, or internal deformation of the ice, and by sliding over the rocks and sediments at the base that causes the glacier to move.

Fluvioglacial landforms or glaciofluvial landforms are those that result from the associated erosion and deposition of sediments caused by glacial meltwater. Glaciers contain suspended sediment loads, much of which is initially picked up from the underlying landmass. Landforms are shaped by glacial erosion through processes such as glacial quarrying, abrasion, and meltwater. Glacial meltwater contributes to the erosion of bedrock through both mechanical and chemical processes. Fluvio-glacial processes can occur on the surface and within the glacier. The deposits that happen within the glacier are revealed after the entire glacier melts or partially retreats. Fluvio-glacial landforms and erosional surfaces include: outwash plains, kames, kame terraces, kettle holes, eskers, varves, and proglacial lakes.

Tavi Murray, FLSW is a glaciologist, the eighth woman to be awarded the Polar Medal.

<span class="mw-page-title-main">Tidewater glacier cycle</span> Behavior of glaciers that terminate at the sea

The tidewater glacier cycle is the typically centuries-long behavior of tidewater glaciers that consists of recurring periods of advance alternating with rapid retreat and punctuated by periods of stability. During portions of its cycle, a tidewater glacier is relatively insensitive to climate change.

Subglacial streams are conduits of glacial meltwater that flow at the base of glaciers and ice caps. Meltwater from the glacial surface travels downward throughout the glacier, forming an englacial drainage system consisting of a network of passages that eventually reach the bedrock below, where they form subglacial streams. Subglacial streams form a system of tunnels and interlinked cavities and conduits, with water flowing under extreme pressures from the ice above; as a result, flow direction is determined by the pressure gradient from the ice and the topography of the bed rather than gravity. Subglacial streams form a dynamic system that is responsive to changing conditions, and the system can change significantly in response to seasonal variation in meltwater and temperature. Water from subglacial streams is routed towards the glacial terminus, where it exits the glacier. Discharge from subglacial streams can have a significant impact on local, and in some cases global, environmental and geological conditions. Sediments, nutrients, and organic matter contained in the meltwater can all influence downstream and marine conditions. Climate change may have a significant impact on subglacial stream systems, increasing the volume of meltwater entering subglacial drainage systems and influencing their hydrology.

<span class="mw-page-title-main">Glacial stream</span> Body of liquid water that flows down a channel formed by a glacier

A glacier stream is a channelized area that is formed by a glacier in which liquid water accumulates and flows. Glacial streams are also commonly referred to as "glacier stream" or/and "glacial meltwater stream". The movement of the water is influenced and directed by gravity and the melting of ice. The melting of ice forms different types of glacial streams such as supraglacial, englacial, subglacial and proglacial streams. Water enters supraglacial streams that sit at the top of the glacier via filtering through snow in the accumulation zone and forming slush pools at the FIRN zone. The water accumulates on top of the glacier in supraglacial lakes and into supraglacial stream channels. The meltwater then flows through various different streams either entering inside the glacier into englacial channels or under the glacier into subglacial channels. Finally, the water leaves the glacier through proglacial streams or lakes. Proglacial streams do not only act as the terminus point but can also receive meltwater. Glacial streams can play a significant role in energy exchange and in the transport of meltwater and sediment.

References

  1. Luke Copland, Tyler Sylvestre, Michael P. Bishop, John F. Shroder, Yeong Bae Seong, Lewis A. Owen, Andrew Bush and Ulrich Kamp (2011). "Expanded and Recently Increased Glacier Surging in the Karakoram". Arctic, Antarctic, and Alpine Research. 43 (4). Arctic, Antarctic, and Alpine Research: An Interdisciplinary Journal: 503–516. doi:10.1657/1938-4246-43.4.503. S2CID   59568488.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. J. Gardelle, E. Berthier, Y. Arnaud, A. Kaab. "Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link)
  3. Jiskoot, Hester and Murray, Tavi; ‘Controls on the distribution of surge-type glaciers in Svalbard’; Journal of Glaciology, 46(154), pp. 412–422 (June 2000)
  4. Summerfield, Michael A., 1991, Global Geomorphology, an introduction to the study of landforms, Pearson, Prentice Hall. Harlow, England
  5. 1 2 3 Dowdeswell, J. A., B. Unwin, A. M. Nuttall and D. J. Wingham. 1999. Velocity structure, flow instability and mass flux on a large Arctic ice cap from satellite radar interferometry. Elsevier Science B.V.
  6. Sharp, M., 1988, Surging glaciers: geomorphic effects, Progress in Physical geography, http://ppg.sagepub.com
  7. 1 2 Jiskoot, H. and D. T. Juhlin, 2009, Surge of a small East Greenland glacier, 2001–2007, suggests Svalbard-type surge mechanism, Journal of Glaciology, Vol. 55, No. 191, pp. 567–570
  8. Murray, T., T. Strozzi, A. Luckman, H. Jiskoot, and P. Christakos (2003), Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions, J. Geophys. Res., 108(B5), 2237, doi : 10.1029/2002JB001906
  9. Post, A. 1969, Distribution of surging glaciers in western North America, J. Glaciol., 8(53), 229-240.
  10. Benn, Douglas I. and David J. A. Evans, Glaciers and Glaciation, Hodder Arnold, 1997 ISBN   978-0-340-58431-6 (verification and page number needed)
  11. "Ingólfsson, Ólafur, Outline of the Physical Geography and Geology of Svalbard". .hi.is. Archived from the original on 2010-05-28. Retrieved 2013-09-24.
  12. 1 2 3 Humphrey, Neil Frank. Basal Hydrology of a Surge-Type Glacier: Observations and Theory Relating to Variegated Glacier. University of Washington, 1987
  13. Fowler, A. C., Murray, T. and Ng, F.S.L., Thermal regulation of glacier surging, Journal of Glaciology, 47(159), 527–538, 2001
  14. Meier, M.F. and Post, A.S., 1969, What are glacier surges? Canadian Journal of Earth Sciences 6, 807-817

Bibliography