This article may be in need of reorganization to comply with Wikipedia's layout guidelines .(March 2019) |
Blue ice occurs when snow falls on a glacier, is compressed, and becomes part of the glacier. During compression, air bubbles are squeezed out, so ice crystals enlarge. This enlargement is responsible for the ice's blue colour.
Small amounts of regular ice appear to be white because of air bubbles inside and also because small quantities of water appear to be colourless. In glaciers, the pressure causes the air bubbles to be squeezed out, increasing the density of the created ice. Water is blue in large quantities, as it absorbs other colours more efficiently than blue. A large piece of compressed ice, or a glacier, similarly appears blue.
The blue color is sometimes wrongly attributed to Rayleigh scattering, which is responsible for the color of the sky. Rather, water ice is blue for the same reason that large quantities of liquid water are blue: it is a result of an overtone of an oxygen–hydrogen (O−H) bond stretch in water, which absorbs light at the red end of the visible spectrum. [1] So, water owes its intrinsic blueness (as seen after > 3 meters of penetration) to selective absorption in the red part of its visible spectrum. The absorbed photons drive vibrational (normally infrared) transitions.
Once blue ice is exposed to warmer air, cracks and fissures appear in surface layers, and break up the large blue crystals of dense, pure ice. Within hours these air filled fissures cloud the surface making the ice appear white. The blue colour will not be seen again until the ice breaks or turns over to expose ice which air could not reach. For example, lucky tourists at Tasman Glacier, New Zealand in January 2011 saw an iceberg roll over to reveal startling blue ice, kept from air by staying underwater for months since the iceberg calved. [2]
Blue ice is exposed in areas of the Antarctic where there is no net addition or subtraction of snow. That is, any snow that falls in that area is counteracted by sublimation or other losses. Such areas are known as blue-ice areas. [3] These areas have been used as runways (e.g. Wilkins Runway, Novolazarevskaya, Patriot Hills Base Camp) due to their hard surface, which is suitable for aircraft fitted with wheels rather than skis.
A glacier is a persistent body of dense ice that is constantly moving downhill under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.
Ice is water that is frozen into a solid state, typically forming at or below temperatures of 0 °C, 32 °F, or 273.15 K. It occurs naturally on Earth, on other planets, in Oort cloud objects, and as interstellar ice. As a naturally occurring crystalline inorganic solid with an ordered structure, ice is considered to be a mineral. Depending on the presence of impurities such as particles of soil or bubbles of air, it can appear transparent or a more or less opaque bluish-white color.
An iceberg is a piece of freshwater ice more than 15 meters long that has broken off a glacier or an ice shelf and is floating freely in open water. Smaller chunks of floating glacially derived ice are called "growlers" or "bergy bits". Much of an iceberg is below the water's surface, which led to the expression "tip of the iceberg" to illustrate a small part of a larger unseen issue. Icebergs are considered a serious maritime hazard.
The Ross Ice Shelf is the largest ice shelf of Antarctica. It is several hundred metres thick. The nearly vertical ice front to the open sea is more than 600 kilometres (370 mi) long, and between 15 and 50 metres high above the water surface. Ninety percent of the floating ice, however, is below the water surface.
Sea ice arises as seawater freezes. Because ice is less dense than water, it floats on the ocean's surface. Sea ice covers about 7% of the Earth's surface and about 12% of the world's oceans. Much of the world's sea ice is enclosed within the polar ice packs in the Earth's polar regions: the Arctic ice pack of the Arctic Ocean and the Antarctic ice pack of the Southern Ocean. Polar packs undergo a significant yearly cycling in surface extent, a natural process upon which depends the Arctic ecology, including the ocean's ecosystems. Due to the action of winds, currents and temperature fluctuations, sea ice is very dynamic, leading to a wide variety of ice types and features. Sea ice may be contrasted with icebergs, which are chunks of ice shelves or glaciers that calve into the ocean. Depending on location, sea ice expanses may also incorporate icebergs.
An ice shelf is a large platform of glacial ice floating on the ocean, fed by one or multiple tributary glaciers. Ice shelves form along coastlines where the ice thickness is insufficient to displace the more dense surrounding ocean water. The boundary between the ice shelf (floating) and grounded ice is referred to as the grounding line; the boundary between the ice shelf and the open ocean is the ice front or calving front.
The Filchner–Ronne Ice Shelf or Ronne–Filchner Ice Shelf is an Antarctic ice shelf bordering the Weddell Sea.
The McMurdo Sound is a sound in Antarctica, known as the southernmost passable body of water in the world, located approximately 1,300 kilometres (810 mi) from the South Pole.
Firn is partially compacted névé, a type of snow that has been left over from past seasons and has been recrystallized into a substance denser than névé. It is ice that is at an intermediate stage between snow and glacial ice. Firn has the appearance of wet sugar, but has a hardness that makes it extremely resistant to shovelling. Its density generally ranges from 0.35 g/cm3 to 0.9 g/cm3, and it can often be found underneath the snow that accumulates at the head of a glacier.
A blue ice runway is a runway constructed in Antarctic areas with no net annual snow accumulation. The density of the ice increases as air bubbles are forced out, strengthening the resultant ice surface so that aircraft landings using wheels instead of skis can be supported. Such runways simplify the transfer of materials to research stations, since wheeled aircraft can carry much heavier loads than ski-equipped aircraft.
The color of water varies with the ambient conditions in which that water is present. While relatively small quantities of water appear to be colorless, pure water has a slight blue color that becomes deeper as the thickness of the observed sample increases. The hue of water is an intrinsic property and is caused by selective absorption and scattering of blue light. Dissolved elements or suspended impurities may give water a different color.
Melt ponds are pools of open water that form on sea ice in the warmer months of spring and summer. The ponds are also found on glacial ice and ice shelves. Ponds of melted water can also develop under the ice, which may lead to the formation of thin underwater ice layers called false bottoms.
Mertz Glacier is a heavily crevassed glacier in George V Coast of East Antarctica. It is the source of a glacial prominence that historically has extended northward into the Southern Ocean, the Mertz Glacial Tongue. It is named in honor of the Swiss explorer Xavier Mertz.
Pine Island Glacier (PIG) is a large ice stream, and the fastest melting glacier in Antarctica, responsible for about 25% of Antarctica's ice loss. The glacier ice streams flow west-northwest along the south side of the Hudson Mountains into Pine Island Bay, Amundsen Sea, Antarctica. It was mapped by the United States Geological Survey (USGS) from surveys and United States Navy (USN) air photos, 1960–66, and named by the Advisory Committee on Antarctic Names (US-ACAN) in association with Pine Island Bay.
Anchor ice is defined by the World Meteorological Organization as "submerged ice attached or anchored to the bottom, irrespective of the nature of its formation". It may also be called bottom-fast ice. Anchor ice is most commonly observed in fast-flowing rivers during periods of extreme cold, at the mouths of rivers flowing into very cold seawater, in the shallow sub or intertidal during or after storms when the air temperature is below the freezing point of the water, and the subtidal in the Antarctic along ice shelves or near floating glacier tongues, and in shallow lakes.
A cryoseism, ice quake or frost quake, is a seismic event caused by a sudden cracking action in frozen soil or rock saturated with water or ice, or by stresses generated at frozen lakes. As water drains into the ground, it may eventually freeze and expand under colder temperatures, putting stress on its surroundings. This stress builds up until relieved explosively in the form of a cryoseism. The requirements for a cryoseism to occur are numerous; therefore, accurate predictions are not entirely possible and may constitute a factor in structural design and engineering when constructing in an area historically known for such events. Speculation has been made between global warming and the frequency of cryoseisms.
The Erebus Glacier Tongue is a mountain outlet glacier and the seaward extension of Erebus Glacier from Ross Island. It projects 11 kilometres (6.8 mi) into McMurdo Sound from the Ross Island coastline near Cape Evans, Antarctica. The glacier tongue varies in thickness from 50 metres (160 ft) at the snout to 300 metres (980 ft) at the point where it is grounded on the shoreline. Explorers from Robert F. Scott's Discovery Expedition (1901–1904) named and charted the glacier tongue.
A blue iceberg is visible after the ice from above the water melts, causing the smooth portion of ice from below the water to overturn. The rare blue ice is formed from the compression of pure snow, which then develops into glacial ice.
A blue-ice area is an ice-covered area of Antarctica where wind-driven snow transport and sublimation result in net mass loss from the ice surface in the absence of melting, forming a blue surface that contrasts with the more common white Antarctic surface. Such blue-ice areas typically form when the movement of both air and ice are obstructed by topographic obstacles such as mountains that emerge from the ice sheet, generating particular climatic conditions where the net snow accumulation is exceeded by wind-driven sublimation and snow transports.
The July 1 Glacier or Qiyi Glacier is a glacier in Jiayuguan City, Gansu, China, and on the northern slope of the Tola Mountain in the Qilian Mountains. It is the closest glacier to cities in Asia, but it has been shrinking in recent years. This glacier was discovered by a geological worker of the Lanzhou Branch of the Chinese Academy of Sciences and a glacier scholar of the Soviet Union on July 1, 1958. The glacier is on a hillside with a slope that is less than 45 degrees. The elevation of the ice peak is 5158.8 meters, and the elevation of the front edge of the ice tongue is 4304 meters. The average thickness of the ice layer of the glacier is 78 meters, and the thickest part can even reach 120 meters. The total length of the July 1 glacier is 3.5 kilometers, and the widest place is 2.4 kilometers. There are 160 million cubic meters of water storage. The Tourist Area in the July 1 Glacier covers about 4 square kilometers.