Crevasse

Last updated
Transverse crevasses, Chugach State Park, Alaska Parque estatal Chugach, Alaska, Estados Unidos, 2017-08-22, DD 94.jpg
Transverse crevasses, Chugach State Park, Alaska

A crevasse is a deep crack that forms in a glacier or ice sheet. Crevasses form as a result of the movement and resulting stress associated with the shear stress generated when two semi-rigid pieces above a plastic substrate have different rates of movement. The resulting intensity of the shear stress causes a breakage along the faces.

Contents

Description

A crevasse in Tangra Mountains, Antarctica Crevasse-Tangra-Mountains.jpg
A crevasse in Tangra Mountains, Antarctica

Crevasses often have vertical or near-vertical walls, which can then melt and create seracs, arches, and other ice formations. [1] These walls sometimes expose layers that represent the glacier's stratigraphy. Crevasse size often depends upon the amount of liquid water present in the glacier. A crevasse may be as deep as 45 metres (150 ft) and as wide as 20 metres (70 ft) [2]

The presence of water in a crevasse can significantly increase its penetration. Water-filled crevasses may reach the bottom of glaciers or ice sheets and provide a direct hydrologic connection between the surface, [3] where significant summer melting occurs, and the bed of the glacier, where additional water may moisten and lubricate the bed and accelerate ice flow. [4] [5] Direct drains of water from the top of a glacier, known as moulins, can also contribute the lubrication and acceleration of ice flow. [5]

Types

Dangers

The glacier Taschachferner below the Wildspitze (left, 3.768 m) in Tyrolia in Austria in April 2005. There are some zones with large open crevasses, e.g., the spot-shaped area below the middle of the image and most right. The line marks the ascent track of mountaineers on skis which intentionally avoided these dangerous areas. Wildspitze seen from Hinterer Brunnkogel, with marked ascent track of ski mountaineer.jpg
The glacier Taschachferner below the Wildspitze (left, 3.768 m) in Tyrolia in Austria in April 2005. There are some zones with large open crevasses, e.g., the spot-shaped area below the middle of the image and most right. The line marks the ascent track of mountaineers on skis which intentionally avoided these dangerous areas.

Falling into glacial crevasses can be dangerous and life-threatening. [7] Some glacial crevasses (such as on the Khumbu Icefall at Mount Everest) can be 50 metres (160 ft) deep, which can cause fatal injuries upon falling. [8] Hypothermia is often a cause of death when falling into a crevasse. [2]

A crevasse may be covered, but not necessarily filled, by a snow bridge made of the previous years' accumulation and snow drifts. The result is that crevasses are rendered invisible, and thus potentially lethal to anyone attempting to navigate their way across a glacier. Occasionally a snow bridge over an old crevasse may begin to sag, providing some landscape relief, but this cannot be relied upon. [9] :343

The danger of falling into a crevasse can be minimized by roping together multiple climbers into a rope team, [9] :340 and the use of friction knots. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Glacier</span> Persistent body of ice that is moving under its own weight

A glacier is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

<span class="mw-page-title-main">Drumlin</span> Elongated hill formed by glacial action

A drumlin, from the Irish word droimnín, first recorded in 1833, in the classical sense is an elongated hill in the shape of an inverted spoon or half-buried egg formed by glacial ice acting on underlying unconsolidated till or ground moraine. Assemblages of drumlins are referred to as fields or swarms; they can create a landscape which is often described as having a 'basket of eggs topography'.

<span class="mw-page-title-main">Moraine</span> Glacially formed accumulation of debris

A moraine is any accumulation of unconsolidated debris, sometimes referred to as glacial till, that occurs in both currently and formerly glaciated regions, and that has been previously carried along by a glacier or ice sheet. It may consist of partly rounded particles ranging in size from boulders down to gravel and sand, in a groundmass of finely-divided clayey material sometimes called glacial flour. Lateral moraines are those formed at the side of the ice flow, and terminal moraines were formed at the foot, marking the maximum advance of the glacier. Other types of moraine include ground moraines and medial moraines.

<span class="mw-page-title-main">Glaciology</span> Scientific study of ice and natural phenomena involving ice

Glaciology is the scientific study of glaciers, or, more generally, ice and natural phenomena that involve ice.

<span class="mw-page-title-main">Mer de Glace</span> Glacier located on the Mont Blanc massif, in the French Alps

The Mer de Glace is a valley glacier located on the northern slopes of the Mont Blanc massif, in the French Alps. It is 7.5 km long and 200 metres (660 ft) deep but, when all its tributary glaciers are taken into account, it can be regarded as the longest and largest glacier in France, and the second longest in the Alps after the Aletsch Glacier.

I can no otherwise convey to you an image of this body of ice, broken into irregular ridges and deep chasms than by comparing it to waves instantaneously frozen in the midst of a violent storm.

<span class="mw-page-title-main">Icefall</span> Relatively rapidly-moving portion of a glacier with chaotic crevassed surface

An icefall is a portion of certain glaciers characterized by relatively rapid flow and chaotic crevassed surface, caused in part by gravity. The term icefall is formed by analogy with the word waterfall, which is a similar phenomenon of the liquid phase but at a more spectacular speed. When ice movement of a glacier is faster than elsewhere, because the glacier bed steepens or narrows, and the flow cannot be accommodated by plastic deformation, the ice fractures, forming crevasses. Where two fractures meet, seracs can be formed. When the movement of the ice slows down, the crevasses can coalesce, resulting in the surface of the glacier becoming smoother.

<span class="mw-page-title-main">Glacial landform</span> Landform created by the action of glaciers

Glacial landforms are landforms created by the action of glaciers. Most of today's glacial landforms were created by the movement of large ice sheets during the Quaternary glaciations. Some areas, like Fennoscandia and the southern Andes, have extensive occurrences of glacial landforms; other areas, such as the Sahara, display rare and very old fossil glacial landforms.

<span class="mw-page-title-main">Khumbu Icefall</span> Glacier in Nepal

The Khumbu Icefall is located at the head of the Khumbu Glacier and the foot of the Western Cwm, which lies at an elevation of 5,486 metres (17,999 ft) on the Nepali slopes of Mount Everest, not far above Base Camp and southwest of the summit. The icefall is considered one of the most dangerous stages of the South Col route to Everest's summit.

<span class="mw-page-title-main">Serac</span> Large block or column of glacial ice

A serac is a block or column of glacial ice, often formed by intersecting crevasses on a glacier. Commonly house-sized or larger, they are dangerous to mountaineers, since they may topple with little warning. Even when stabilized by persistent cold weather, they can be an impediment to glacier travel.

<span class="mw-page-title-main">Ice stream</span> A region of fast-moving ice within an ice sheet

An ice stream is a region of fast-moving ice within an ice sheet. It is a type of glacier, a body of ice that moves under its own weight. They can move upwards of 1,000 metres (3,300 ft) a year, and can be up to 50 kilometres (31 mi) in width, and hundreds of kilometers in length. They tend to be about 2 km (1.2 mi) deep at the thickest, and constitute the majority of the ice that leaves the sheet. In Antarctica, the ice streams account for approximately 90% of the sheet's mass loss per year, and approximately 50% of the mass loss in Greenland.

<span class="mw-page-title-main">Moulin (geomorphology)</span> Shaft within a glacier or ice sheet which water enters from the surface

A moulin is a roughly circular, vertical well-like shaft formed where a surface meltstream exploits a weakness in the ice. The term is derived from the French word for mill.

<span class="mw-page-title-main">Plucking (glaciation)</span> Glacial erosion of bedrock

Plucking, also referred to as quarrying, is a glacial phenomenon that is responsible for the weathering and erosion of pieces of bedrock, especially large "joint blocks". This occurs in a type of glacier called a "valley glacier". As a glacier moves down a valley, friction causes the basal ice of the glacier to melt and infiltrate joints (cracks) in the bedrock. The freezing and thawing action of the ice enlarges, widens, or causes further cracks in the bedrock as it changes volume across the ice/water phase transition, gradually loosening the rock between the joints. This produces large pieces of rock called joint blocks. Eventually these joint blocks come loose and become trapped in the glacier.

<span class="mw-page-title-main">Tunnel valley</span> Glacial-formed geographic feature

A tunnel valley is a U-shaped valley originally cut under the glacial ice near the margin of continental ice sheets such as that now covering Antarctica and formerly covering portions of all continents during past glacial ages. They can be as long as 100 km (62 mi), 4 km (2.5 mi) wide, and 400 m (1,300 ft) deep.

<span class="mw-page-title-main">Rogen moraine</span> Landform of ridges deposited by a glacier or ice sheet transverse to ice flow

A Rogen moraine is a subglacially formed type of moraine landform, that mainly occurs in Fennoscandia, Scotland, Ireland and Canada. It is one of the three main types of hummocky moraines. They cover large areas that have been covered by ice, and occur mostly in what is believed to have been the central areas of the ice sheets. Rogen moraines are named after Lake Rogen in Härjedalen, Sweden, the landform's type locality. Rogen Nature Reserve serves to protect the unusual area.

<span class="mw-page-title-main">Fracture (geology)</span> Geologic discontinuity feature, often a joint or fault

A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.

<span class="mw-page-title-main">Ice-sheet dynamics</span> Technical explanation of ice motion within large bodies of ice

Ice sheet dynamics describe the motion within large bodies of ice such as those currently on Greenland and Antarctica. Ice motion is dominated by the movement of glaciers, whose gravity-driven activity is controlled by two main variable factors: the temperature and the strength of their bases. A number of processes alter these two factors, resulting in cyclic surges of activity interspersed with longer periods of inactivity, on both hourly and centennial time scales. Ice-sheet dynamics are of interest in modelling future sea level rise.

<span class="mw-page-title-main">Ice calving</span> Breaking of ice chunks from the edge of a glacier

Ice calving, also known as glacier calving or iceberg calving, is the breaking of ice chunks from the edge of a glacier. It is a form of ice ablation or ice disruption. It is the sudden release and breaking away of a mass of ice from a glacier, iceberg, ice front, ice shelf, or crevasse. The ice that breaks away can be classified as an iceberg, but may also be a growler, bergy bit, or a crevasse wall breakaway.

<span class="mw-page-title-main">Fissure</span> Long, narrow crack opening on a planetary surface

A fissure is a long, narrow crack opening along the surface of Earth. The term is derived from the Latin word fissura, which means 'cleft' or 'crack'. Fissures emerge in Earth's crust, on ice sheets and glaciers, and on volcanoes.

An ice shelf basal channel is a type of subglacial meltwater channel that forms on the underside of floating ice shelves connected to ice sheets. Basal channels are generally rounded cavities which form parallel to ice sheet flow. These channels are found mainly around the Greenland and Antarctic ice sheets in places with relatively warm ocean water. West Antarctica in particular has the highest density of basal channels in the world. Basal channels can be tens of kilometers long, kilometers wide, and incise hundreds of meters up into an ice shelf. These channels can evolve and grow just as rapidly as ice shelves can, with some channels having incision rates approaching 22 meters per year. Basal channels are categorized based on what mechanisms created them and where they formed.

In theoretical glaciology and continuum mechanics, the Glen–Nye flow law, also referred to as Glen's flow law, is an empirically derived constitutive relation widely used as a model for the rheology of glacial ice. The Glen–Nye flow law treats ice as a purely viscous, incompressible, isotropic, non-Newtonian fluid, with a viscosity determined by a power law relation between strain rate and stress:

References

  1. van der Veen, C (1990). "Crevasses on Glaciers". Polar Geography . 23 (3): 213–245. doi:10.1080/10889379909377677.
  2. 1 2 "Crevasse". National Geographic. Retrieved 2023-06-22.
  3. Boon, S.; M.J. Sharp (2003). "The role of hydrologically-driven ice fracture in drainage system evolution on an Arctic glacier". Geophysical Research Letters. 30 (18): 1916. Bibcode:2003GeoRL..30.1916B. doi: 10.1029/2003gl018034 . S2CID   133697259.
  4. Zwally, H.J.; Abdalati, W.; Herring, T.; Larson, K.; Saba, J.; Steffen, K. (2002). "Surface melt-induced acceleration of Greenland ice-sheet flow". Science . 297 (5579): 218–222. Bibcode:2002Sci...297..218Z. doi: 10.1126/science.1072708 . PMID   12052902. S2CID   37381126.
  5. 1 2 Colgan, W.; Rajaram, H.; Abdalati, W.; McCutchan, C.; Mottram, R.; Moussavi, M.S.; Grigsby, S. (2016). "Glacier crevasses: Observations, models, and mass balance implications". Rev. Geophys. 54 (1): 119–161. Bibcode:2016RvGeo..54..119C. doi: 10.1002/2015RG000504 .
  6. 1 2 Holdsworth, G (October 1956). "Primary Transverse Crevasses". Journal of Glaciology. 8 (52): 107–129. doi: 10.1017/S0022143000020797 .
  7. Pasquier, M; Taffé, P; Kottmann, A; Mosimann, U; Reisten, O; Hugli, O (Nov 2014). "Epidemiology and mortality of glacier crevasse accidents". Injury. 45 (11): 1700–3. doi:10.1016/j.injury.2014.07.001. PMID   25082349.
  8. Gurubacharya, Binaj (2023-04-13). "Mount Everest: 3 Sherpa climbers missing after falling into deep Khumbu Icefall crevasse". Associated Press.
  9. 1 2 Graydon, Don; Hanson, Kurt, eds. (1997). Mountaineering: The Freedom of the Hills (6th ed.). The Mountaineers. ISBN   0-89886-427-5.
  10. Latimer, Doug (2022-06-20). "MOUNTAIN SAFETY: GLACIER TRAVEL AND CREVASSE RESCUE FOR TWO-PERSON TEAMS". Alpine Club of Canada.

Bibliography