Marsh gas

Last updated
Bubbles of methane, created by methanogens, that are present in the marsh, more commonly known as marsh gas. Marsh gas Dzita 2011 B004.jpg
Bubbles of methane, created by methanogens, that are present in the marsh, more commonly known as marsh gas.

Marsh gas, also known as swamp gas or bog gas, is a mixture primarily of methane and smaller amounts of hydrogen sulfide, carbon dioxide, and trace phosphine that is produced naturally within some geographical marshes, swamps, and bogs.

Contents

The surface of marshes, swamps, and bogs is initially porous vegetation that rots to form a crust that prevents oxygen from reaching the organic material trapped below. That is the condition that allows anaerobic digestion and fermentation of any plant or animal matter, which then produces methane.

The trapped methane can escape through any of three main pathways: by the diffusion of methane molecules across an air–water interface, by bubbling out of water in a process known as ebullition, or through plant-mediated transport. [1]

Methane formation

Methane is the primary gas that makes up the product colloquially known as "marsh gas". Much of the biogenic methane produced in nature is derived from either acetate cleavage or by the hydrogen reduction of carbon dioxide. Methane can also be produced by methanogens, archaea that produce methane under anoxic conditions, in a process known as methanogenesis. Methanogenic genera Methanosarcina are common in marsh environments. They are both known to stimulate methane production in aquatic muds and use acetate, methanol, and trimethylamine as substrates for methane production. [2]

Escape routes

Global wetlands are one of the largest sources of atmospheric methane. This methane, which is produced by the decomposition of organic matter in an anoxic environment, escapes through either diffusion, a process that occurs mostly at night, ebullition, or plant-mediated transportation.

Methane gas escaping via three routes: ebullition (bubbling), plant-mediated transport, and diffusion. Marsh gas.webp
Methane gas escaping via three routes: ebullition (bubbling), plant-mediated transport, and diffusion.

The diffusive process is controlled by the passage of gas across the air–water interface. [1] The diffusion can be accelerated and intensified by upwelling, such as the motion from turbulent eddies, and cooling processes. At night, heat is emitted from the water surface by radiation. The colder surface water sinks, pushing the warmer surface water out and forming eddies. These eddies circulate the dissolved methane throughout the water column and increase the methane flux to the atmosphere. This process is called hydrodynamic transport, and it accounts for more than half of nighttime methane fluxes as well as 32% of annual methane emissions from wetland environments. [3]

Ebullition, also known as bubbling, is a type of one-way transport of gases from nutrient rich sediments, to the water column, and then to the atmosphere. It is a major mechanism for gas exchange in freshwater and coastal marine ecosystems and is known to peak during the daytime and at warm temperatures. It has been reported that ebullition is responsible for 45% of the annual methane flux for fresh water marshes [3] and that it is more important in the summer months during the daytime and can also be triggered by increased wind.

One of the most common species of grass in marsh environments is Spartina . These spartina and other common marsh grasses use a gas transport system found in the stems and roots of the plants. The gas transport system works by gaseous diffusion that occurs through the leaf blades and then moves down into the furthest tips of the plant roots. This transport system is sufficient to supply all of the aerobic respiratory needs of the grass roots and also helps to aerate the surrounding mud. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Swamp</span> A forested wetland

A swamp is a forested wetland. Swamps are considered to be transition zones because both land and water play a role in creating this environment. Swamps vary in size and are located all around the world. The water of a swamp may be fresh water, brackish water, or seawater. Freshwater swamps form along large rivers or lakes where they are critically dependent upon rainwater and seasonal flooding to maintain natural water level fluctuations. Saltwater swamps are found along tropical and subtropical coastlines. Some swamps have hammocks, or dry-land protrusions, covered by aquatic vegetation, or vegetation that tolerates periodic inundation or soil saturation. The two main types of swamp are "true" or swamp forests and "transitional" or shrub swamps. In the boreal regions of Canada, the word swamp is colloquially used for what is more formally termed a bog, fen, or muskeg. Some of the world's largest swamps are found along major rivers such as the Amazon, the Mississippi, and the Congo.

<span class="mw-page-title-main">Peat</span> Accumulation of partially decayed vegetation

Peat is an accumulation of partially decayed vegetation or organic matter. It is unique to natural areas called peatlands, bogs, mires, moors, or muskegs. Sphagnum moss, also called peat moss, is one of the most common components in peat, although many other plants can contribute. The biological features of sphagnum mosses act to create a habitat aiding peat formation, a phenomenon termed 'habitat manipulation'. Soils consisting primarily of peat are known as histosols. Peat forms in wetland conditions, where flooding or stagnant water obstructs the flow of oxygen from the atmosphere, slowing the rate of decomposition. Peat properties such as organic matter content and saturated hydraulic conductivity can exhibit high spatial heterogeneity.

<span class="mw-page-title-main">Wetland</span> Land area that is permanently, or seasonally saturated with water

A wetland is a distinct ecosystem that is flooded or saturated by water, either permanently for years or decades or seasonally for a shorter periods. Flooding results in oxygen-free anoxic processes prevailing, especially in the soils. The primary factor that distinguishes wetlands from terrestrial land forms or water bodies is the characteristic vegetation of aquatic plants, adapted to the unique anoxic hydric soils. Wetlands are considered among the most biologically diverse of all ecosystems, serving as home to a wide range of plant and animal species. Methods for assessing wetland functions, wetland ecological health, and general wetland condition have been developed for many regions of the world. These methods have contributed to wetland conservation partly by raising public awareness of the functions some wetlands provide. Constructed wetlands are designed and built to treat municipal and industrial wastewater as well as to divert stormwater runoff. Constructed wetlands may also play a role in water-sensitive urban design.

<span class="mw-page-title-main">Fen</span> Type of wetland fed by mineral-rich ground or surface water

A fen is a type of peat-accumulating wetland fed by mineral-rich ground or surface water. It is one of the main types of wetlands along with marshes, swamps, and bogs. Bogs and fens, both peat-forming ecosystems, are also known as mires. The unique water chemistry of fens is a result of the ground or surface water input. Typically, this input results in higher mineral concentrations and a more basic pH than found in bogs. As peat accumulates in a fen, groundwater input can be reduced or cut off, making the fen ombrotrophic rather than minerotrophic. In this way, fens can become more acidic and transition to bogs over time.

<span class="mw-page-title-main">Marsh</span> Low-lying and seasonally waterlogged land

A marsh is — according to ecological definitions — a wetland that is dominated by herbaceous rather than woody plant species. More in general, the word can be used for any low-lying and seasonally waterlogged terrain. In Europe and in agricultural literature low-lying meadows that require draining and embanked polderlands are also referred to as marshes or marshland.

<span class="mw-page-title-main">Salt marsh</span> Coastal ecosystem between land and open saltwater that is regularly flooded

A salt marsh, saltmarsh or salting, also known as a coastal salt marsh or a tidal marsh, is a coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides. It is dominated by dense stands of salt-tolerant plants such as herbs, grasses, or low shrubs. These plants are terrestrial in origin and are essential to the stability of the salt marsh in trapping and binding sediments. Salt marshes play a large role in the aquatic food web and the delivery of nutrients to coastal waters. They also support terrestrial animals and provide coastal protection.

<i>Hippuris vulgaris</i> Species of plant

Hippuris vulgaris, known as mare's-tail or common mare's-tail, is a common aquatic plant of Eurasia and North America ranging from Greenland to the Tibetan Plateau to Arizona. It prefers non-acidic waters.

Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group phylogenetically distinct from both eukaryotes and bacteria, although many live in close association with anaerobic bacteria. The production of methane is an important and widespread form of microbial metabolism. In anoxic environments, it is the final step in the decomposition of biomass. Methanogenesis is responsible for significant amounts of natural gas accumulations, the remainder being thermogenic.

The pedosphere is the outermost layer of the Earth that is composed of soil and subject to soil formation processes. It exists at the interface of the lithosphere, atmosphere, hydrosphere and biosphere. The pedosphere is the skin of the Earth and only develops when there is a dynamic interaction between the atmosphere, biosphere, lithosphere and the hydrosphere. The pedosphere is the foundation of terrestrial life on Earth.

<span class="mw-page-title-main">Hydrosere</span>

A hydrosere is a plant succession which occurs in an area of fresh water such as in oxbow lakes and kettle lakes. In time, an area of open freshwater will naturally dry out, ultimately becoming woodland. During this change, a range of different landtypes such as swamp and marsh will succeed each other.

<span class="mw-page-title-main">Eddy covariance</span> Atmospheric measurement technique

The eddy covariance is a key atmospheric measurement technique to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The method analyses high-frequency wind and scalar atmospheric data series, gas, energy, and momentum, which yields values of fluxes of these properties. It is a statistical method used in meteorology and other applications to determine exchange rates of trace gases over natural ecosystems and agricultural fields, and to quantify gas emissions rates from other land and water areas. It is frequently used to estimate momentum, heat, water vapour, carbon dioxide and methane fluxes.

<i>Phragmites australis</i> Species of grass commonly known as reed

Phragmites australis, known as the common reed, is a species of flowering plant in the grass family Poaceae. It is a wetland grass that can grow up to 20 feet tall and has a cosmopolitan distribution worldwide.

<span class="mw-page-title-main">Methane</span> Hydrocarbon compound (CH₄) in natural gas

Methane is a chemical compound with the chemical formula CH4. It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it is hard because it is a gas at standard temperature and pressure.

<span class="mw-page-title-main">Brackish marsh</span> Marsh with brackish level of salinity

Brackish marshes develop from salt marshes where a significant freshwater influx dilutes the seawater to brackish levels of salinity. This commonly happens upstream from salt marshes by estuaries of coastal rivers or near the mouths of coastal rivers with heavy freshwater discharges in the conditions of low tidal ranges.

Soil gases are the gases found in the air space between soil components. The spaces between the solid soil particles, if they do not contain water, are filled with air. The primary soil gases are nitrogen, carbon dioxide and oxygen. Oxygen is critical because it allows for respiration of both plant roots and soil organisms. Other natural soil gases include nitric oxide, nitrous oxide, methane, and ammonia. Some environmental contaminants below ground produce gas which diffuses through the soil such as from landfill wastes, mining activities, and contamination by petroleum hydrocarbons which produce volatile organic compounds.

<span class="mw-page-title-main">Methane chimney</span>

A methane chimney or gas chimney is a rising column of natural gas, mainly methane within a water or sediment column. The contrast in physical properties between the gas phase and the surrounding water makes such chimneys visible in oceanographic and geophysical data. In some cases, gas bubbles released at the seafloor may dissolve before they reach the ocean surface, but the increased hydrocarbon concentration may still be measured by chemical oceanographic techniques.

<span class="mw-page-title-main">Aerobic methane production</span> Potential biological pathway for atmospheric methane production

Aerobic methane production is a potential biological pathway for atmospheric methane (CH4) production under oxygenated conditions. The existence of this pathway was first theorized in 2006. While significant evidence suggests the existence of this pathway, it remains poorly understood and its existence is controversial. Naturally occurring methane is mainly produced by the process of methanogenesis, a form of anaerobic respiration used by microorganisms as an energy source. Methanogenesis usually only occurs under anoxic conditions. By contrast, aerobic methane production is thought to occur in oxygenated environments under near-ambient conditions. The process involves non-microbial methane generation from terrestrial plant-matter. Temperature and ultraviolet light are thought to be key factors in this process. Methane may also be produced under aerobic conditions in near-surface ocean water, a process which likely involves the degradation of methylphosphonate.

<span class="mw-page-title-main">Greenhouse gas emissions from wetlands</span> Source of gas emissions

Greenhouse gas emissions from wetlands of concern consist primarily of methane and nitrous oxide emissions. Wetlands are the largest natural source of atmospheric methane in the world, and are therefore a major area of concern with respect to climate change. Wetlands account for approximately 20–30% of atmospheric methane through emissions from soils and plants, and contribute an approximate average of 161 Tg of methane to the atmosphere per year.

<span class="mw-page-title-main">Peatland</span> Wetland terrain without forest cover, dominated by living, peat-forming plants

A peatland is a type of wetland whose soils consist of organic matter from decaying plants, forming layers of peat. Peatlands arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia. Like coral reefs, peatlands are unusual landforms that derive mostly from biological rather than physical processes, and can take on characteristic shapes and surface patterning.

Increasing methane emissions are a major contributor to the rising concentration of greenhouse gases in Earth's atmosphere, and are responsible for up to one-third of near-term global heating. During 2019, about 60% of methane released globally was from human activities, while natural sources contributed about 40%. Reducing methane emissions by capturing and utilizing the gas can produce simultaneous environmental and economic benefits.

References

  1. 1 2 Anthony, Katey Walter; MacIntyre, Sally (2016). "Nocturnal escape route for marsh gas". Nature. 535 (7612): 363–365. doi: 10.1038/535363a . ISSN   1476-4687. PMID   27443738. S2CID   4455298.
  2. Oremland, Ronald S.; Marsh, Lorraine M.; Polcin, Sandra (1982). "Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments". Nature. 296 (5853): 143–145. Bibcode:1982Natur.296..143O. doi:10.1038/296143a0. ISSN   1476-4687. S2CID   97553723.
  3. 1 2 Poindexter, Cristina M.; Baldocchi, Dennis D.; Matthes, Jaclyn Hatala; Knox, Sara Helen; Variano, Evan A. (2016). "The contribution of an overlooked transport process to a wetland's methane emissions". Geophysical Research Letters. 43 (12): 6276–6284. Bibcode:2016GeoRL..43.6276P. doi: 10.1002/2016GL068782 . ISSN   1944-8007. S2CID   131801158.
  4. Teal, John M.; Kanwisher, John W. (1966). "Gas Transport in the Marsh Grass, Spartina alterniflora". Journal of Experimental Botany. 17 (2): 355–361. doi:10.1093/jxb/17.2.355. ISSN   0022-0957.