Firedamp

Last updated

Firedamp is any flammable gas found in coal mines, typically coalbed methane. [1] It is particularly found in areas where the coal is bituminous. The gas accumulates in pockets in the coal and adjacent strata and when they are penetrated the release can trigger explosions. Historically, if such a pocket was highly pressurized, it was termed a "bag of foulness". [2]

Contents

Name

Damp is the collective name given to all gases (other than air) found in coal mines in Great Britain and North America. [1]

As well as firedamp, other damps include blackdamp (nonbreathable mixture of carbon dioxide, water vapour and other gases); whitedamp (carbon monoxide and other gases produced by combustion); poisonous, explosive stinkdamp (hydrogen sulfide), with its characteristic rotten-egg odour; and the insidiously lethal afterdamp (carbon monoxide and other gases) which are produced following explosions of firedamp or coal dust.

Etymology

Often hyphenated as fire-damp, this term for a flammable type of underground mine gas in first part derives via the Old English fyr, and from the proto-Germanic fūr for "fire" (the origin of the same word in Dutch and German, with similar original spellings in Old Saxon, Frisian, and Norse, as well as Middle Dutch and Old High German). In the second part, the meaning of "damp" (most commonly understood to imply humidity) presents evidence of having been separated from that newer, irrelevant meaning at least by the first decade of the 18th century, where the original relevant meaning of "vapor" also derives from a Proto-Germanic origin, dampaz, which gave rise to its immediate English predecessor, the Middle Low German damp (with no record of an Old English intermediary). As with the derivation of the first, the proto-Germanic dampaz gave rise to many other cognates, including the Old High German damph, the Old Norse dampi, and the modern German Dampf, the last of which still translates as "vapor". [3]

Contribution to mine deaths

Firedamp (1889) by Constantin Meunier depicts the aftermath of a mining disaster Constantin meunier, il grisu, 1888-90.jpg
Firedamp (1889) by Constantin Meunier depicts the aftermath of a mining disaster
Stephenson's safety lamp shown with Davy's lamp on the left Stephenson-safety-lamp.jpg
Stephenson's safety lamp shown with Davy's lamp on the left

Firedamp is explosive at concentrations between 4% and 16%, with most explosions occurring at around 10%. It caused many deaths in coal mines before the invention of the Geordie lamp and Davy lamp. [4] Even after the safety lamps were brought into common use, firedamp explosions could still be caused by sparks produced when coal contaminated with pyrites was struck with metal tools. The presence of coal dust in the air increased the risk of explosion with firedamp and could cause explosions even in the absence of firedamp. The Tyneside coal mines in England had the deadly combination of bituminous coal contaminated with pyrites and there was a great number of deaths in accidents caused by firedamp explosions, including 102 dead at Wallsend in 1835. [4]

The problem of firedamp in mines had been brought to the attention of the Royal Society by 1677 [5] and in 1733 James Lowther reported that as a shaft was being sunk for a new pit at Saltom near Whitehaven there had been a major release when a layer of black stone had been broken through into a coal seam. Ignited with a candle, it had given a steady flame "about half a Yard in Diameter, and near two Yards high". The flame being extinguished and a wider penetration through the black stone made, reigniting of the gas gave a bigger flame, a yard in diameter and about three yards high, which was extinguished only with difficulty. The blower was panelled off from the shaft and piped to the surface, where more than two and a half years later it continued as fast as ever, filling a large bladder in a few seconds. [6] The society members elected Sir James Fellow but were unable to come up with any solution nor improve on the assertion (eventually found to be incorrect) of Carlisle Spedding, the author of the paper, that "this sort of Vapour, or damp Air, will not take Fire except by Flame; Sparks do not affect it, and for that Reason it is frequent to use Flint and Steel in Places affected with this sort of Damp, which will give a glimmering Light, that is a great Help to the Workmen in difficult Cases."

Davy lamp (drawing) Davy lamp.png
Davy lamp (drawing)

A great step forward in countering the problem of firedamp came when safety lamps, intended to provide illumination whilst being incapable of igniting firedamp, were proposed by both George Stephenson and Humphry Davy in response to accidents such as the Felling mine disaster near Newcastle upon Tyne, which killed 92 people on 25 May 1812. Davy experimented with brass gauze, determining the maximum size of the gaps and the optimum wire thickness to prevent a flame passing through the gauze. [7] If a naked flame was thus enclosed totally by such a gauze, then methane could pass into the lamp and burn safely above the flame. Stephenson's lamp (the "Geordie lamp") worked on a different principle: the flame was enclosed by glass; air access to the flame was through tubes sufficiently narrow that the flame could not burn-back in incoming firedamp and the exiting gases were too low in oxygen to allow the enclosed flame to reach the surrounding atmosphere. Both principles were combined in later versions of safety lamps.

Even after the widespread introduction of the safety lamp, explosions continued because the early lamps were fragile and easily damaged. For example the iron gauze on a Davy lamp needed to lose only one wire to become unsafe. The light was also very poor (compared with a naked flame) and there were continuous attempts to improve the basic design. The height of the cone of burning methane in a flame safety lamp can be used to estimate the concentration of the gas in the local atmosphere. It was not until the 1890s that safe and reliable electric lamps became available in collieries.

The Firedamp whistle was developed by Fritz Haber in 1913, as a prophylactic indicator of firedamp, but calibration in a working colliery ultimately proved impractical. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Davy lamp</span> Safety lamp used in flammable atmospheres

The Davy lamp is a safety lamp used in flammable atmospheres, invented in 1815 by Sir Humphry Davy. It consists of a wick lamp with the flame enclosed inside a mesh screen. It was created for use in coal mines, to reduce the danger of explosions due to the presence of methane and other flammable gases, called firedamp or minedamp.

The Blantyre mining disaster, which happened on the morning of 22 October 1877, in Blantyre, Scotland, was Scotland's worst ever mining accident. Pits No. 2 and No. 3 of William Dixon's Blantyre Colliery were the site of an explosion which killed 207 miners, possibly more, with the youngest being a boy of 11. It was known that firedamp was present in the pit and it is likely that this was ignited by a naked flame. The accident left 92 widows and 250 fatherless children.

Afterdamp is the toxic mixture of gases left in a mine following an explosion caused by methane-rich firedamp, which itself can initiate a much larger explosion of coal dust. The term is etymologically and practically related to other terms for underground mine gases—such as firedamp, white damp, and black damp, with afterdamp being composed, rather, primarily by carbon dioxide, carbon monoxide and nitrogen, with highly toxic stinkdamp-constituent hydrogen sulfide possibly also present. However, the high content of carbon monoxide is the component that kills, preferentially combining with haemoglobin in the blood and thus depriving victims of oxygen. Globally, afterdamp has caused many of the casualties in disasters of pit coalfields, including British, such as the Senghenydd colliery disaster. Such disasters continue to afflict working mines, for instance in mainland China.

Trimdon Grange is a village in County Durham, in England. It is situated ten miles to the west of Hartlepool, and a short distance to the north of Trimdon.

<span class="mw-page-title-main">Easington Colliery</span> Village in County Durham, England

Easington Colliery is a village in County Durham, England, known for a history of coal mining. It is situated to the north of Horden, a short distance to the east of Easington. It had a population of 4,959 in 2001, and 5,022 at the 2011 Census.

<span class="mw-page-title-main">Geordie lamp</span> A miners lamp invented by George Stephenson in 1815

The Geordie lamp was a safety lamp for use in flammable atmospheres, invented by George Stephenson in 1815 as a miner's lamp to prevent explosions due to firedamp in coal mines.

A safety lamp is any of several types of lamp that provides illumination in places such as coal mines where the air may carry coal dust or a build-up of inflammable gases, which may explode if ignited, possibly by an electric spark. Until the development of effective electric lamps in the early 1900s, miners used flame lamps to provide illumination. Open flame lamps could ignite flammable gases which collected in mines, causing explosions; safety lamps were developed to enclose the flame to prevent it from igniting the explosive gases. Flame safety lamps have been replaced for lighting in mining with sealed explosion-proof electric lights, but continue to be used to detect gases.

<span class="mw-page-title-main">Senghenydd colliery disaster</span> Mining explosion in 1913

The Senghenydd colliery disaster, also known as the Senghenydd explosion, occurred at the Universal Colliery in Senghenydd, near Caerphilly, Glamorgan, Wales, on 14 October 1913. The explosion, which killed 439 miners and a rescuer, is the worst mining accident in the United Kingdom. Universal Colliery, on the South Wales Coalfield, extracted steam coal, which was much in demand. Some of the region's coal seams contained high quantities of firedamp, a highly explosive gas consisting of methane and hydrogen.

<span class="mw-page-title-main">Oaks explosion</span> 1866 British mining disaster

The Oaks explosion, which happened at a coal mine in West Riding of Yorkshire on 12 December 1866, remains the worst mining disaster in England. A series of explosions caused by firedamp ripped through the underground workings at the Oaks Colliery at Hoyle Mill near Stairfoot in Barnsley killing 361 miners and rescuers. It was the worst mining disaster in the United Kingdom until the 1913 Senghenydd explosion in Wales.

<span class="mw-page-title-main">Felling mine disasters</span>

The Felling Colliery in Britain, suffered four disasters in the 19th century, in 1812, 1813, 1821 and 1847. By far the worst of the four was the 1812 disaster which claimed 92 lives on 25 May 1812. The loss of life in the 1812 disaster was one of the motivators for the development of miners' safety lamps such as the Geordie lamp and the Davy lamp.

Whitedamp is a noxious mixture of gases formed by the combustion of coal, usually in an enclosed environment such as a coal mine. The main, most toxic constituent is carbon monoxide, which causes carbon monoxide poisoning. Hydrogen sulfide, also called stinkdamp, may co-occur. Coal frequently starts to burn slowly in mines when it is exposed to the atmosphere; partial combustion produces carbon monoxide. The term is etymologically and practically related to terms for other underground mine gases such as firedamp, black damp, stink damp, and afterdamp.

Blackdamp is an asphyxiant, reducing the available oxygen content of air to a level incapable of sustaining human or animal life. It is not a single gas but a mixture of unbreathable gases left after oxygen is removed from the air and typically consists of nitrogen, carbon dioxide and water vapour. The term is etymologically and practically related to terms for other underground mine gases such as fire damp, white damp, stink damp, and afterdamp.

<span class="mw-page-title-main">Mine rescue</span> Rescue of persons trapped after mining accidents

Mine rescue or mines rescue is the specialised job of rescuing miners and others who have become trapped or injured in underground mines because of mining accidents, roof falls or floods and disasters such as explosions.

Clifton Hall Colliery was one of two coal mines in Clifton on the Manchester Coalfield, historically in Lancashire which was incorporated into the City of Salford in Greater Manchester, England in 1974. Clifton Hall was notorious for an explosion in 1885 which killed around 178 men and boys.

<span class="mw-page-title-main">Mining lamp</span> Lamp for underground mining, head-mounted or otherwise

A mining lamp is a lamp, developed for the rigid necessities of underground mining operations. Most often it is worn on a hard hat in the form of a headlamp.

<span class="mw-page-title-main">Brunner Mine disaster</span> 1896 mining accident in New Zealand

The Brunner Mine disaster happened at 9:30 am on Thursday 26 March 1896, when an explosion deep in the Brunner Mine, in the West Coast region of New Zealand, killed all 65 miners below ground. The Brunner Mine disaster is the deadliest mining disaster in New Zealand's history.

The West Stanley Pit disasters refers to two explosions at the West Stanley colliery. West Stanley colliery was a coal mine near Stanley. It opened in 1832 and closed in 1936. Over the years several seams were worked through four shafts: Kettledrum pit, Lamp pit, Mary pit and New pit. In 1882 an underground explosion killed 13 men. In 1909 another explosion took place, killing 168 men. Twenty-nine men survived the disaster.

<span class="mw-page-title-main">Bedford Colliery disaster</span> 1886 coal mining disaster

The Bedford Colliery disaster occurred on Friday 13 August 1886 when an explosion of firedamp caused the death of 38 miners at Bedford No.2 Pit, at Bedford, Leigh in what then was Lancashire. The colliery, sunk in 1884 and known to be a "fiery pit", was owned by John Speakman.

This is a partial glossary of coal mining terminology commonly used in the coalfields of the United Kingdom. Some words were in use throughout the coalfields, some are historic and some are local to the different British coalfields.

<span class="mw-page-title-main">Lundhill Colliery explosion</span> Coal mining accident in Wombwell, Yorkshire, UK

The Lundhill Colliery explosion was a coal mining accident which took place on 19 February 1857 in Wombwell, Yorkshire, UK in which 189 men and boys aged between 10 and 59 died. It is one of the biggest industrial disasters in the country's history and it was caused by a firedamp explosion. It was the first disaster to appear on the front page of the Illustrated London News.

References

  1. 1 2 "damp | Infoplease". www.infoplease.com. Retrieved 28 September 2022.
  2. William Stukeley Gresly (1882). "Bag of foulness". A Glossary of Terms Used in Coal Mining. London: E. & F.N. Spon.
  3. Harper, D. (n.d.). Etymology of fire-damp. Online Etymology Dictionary. Retrieved January 6, 2022, from this link.
  4. 1 2 Holland, John (1841). The History and Description of Fossil Fuel, the Collieries, and Coal Trade of Great Britain. London: Whittaker and Co (Digital edition Kress Library of Business and Economics, Harvard University). pp.  267–8.
  5. "Of Damps in Mines" by R Moslyn(?) (no 136. p890, volume XII (1677)) reprinted in The Philosophical transactions of the Royal society of London, from their commencement in 1665, in the year 1800. London: C R Hutton. 1809. pp. 398–401. - reports an event at Moslyn in Flintshire; both here and in the author's name Mostyn seems more plausible
  6. Lowther, James (1733). "An Account of the Damp Air in a Coal-Pit of Sir James Lowther, Bart. Sunk within 20 Yards of the Sea; Communicated by Him to the Royal Society". Philosophical Transactions. 38 (427–435): 109–113. Bibcode:1733RSPT...38..109L. doi:10.1098/rstl.1733.0019. JSTOR   103830. S2CID   186210832.
  7. Humphry Davy (1816). On the Fire-damp of Coal Mines: From the Philosophical Transactions of the Royal Society. With an Advertisement : Containing an Account of an Invention for Lighting the Mines and Consuming the Fire-damp Without Danger to the Miner. Bulmer.
  8. Margit Szöllösi-Janze: Fritz Haber 1868-1934: Eine Biographie, Verlag C. H.Beck, 1998, ISBN   978-3406435485, p. 240-242