Geology of New York (state)

Last updated
Catskill Escarpment from Olana State Historic Site across Hudson River Catskill Escarpment from Olana.jpg
Catskill Escarpment from Olana State Historic Site across Hudson River

The geology of the State of New York is made up of ancient Precambrian crystalline basement rock, forming the Adirondack Mountains and the bedrock of much of the state. These rocks experienced numerous deformations during mountain building events and much of the region was flooded by shallow seas depositing thick sequences of sedimentary rock during the Paleozoic. Fewer rocks have deposited since the Mesozoic as several kilometers of rock have eroded into the continental shelf and Atlantic coastal plain, although volcanic and sedimentary rocks in the Newark Basin are a prominent fossil-bearing feature near New York City from the Mesozoic rifting of the supercontinent Pangea.

Contents

Stratigraphy, Tectonics & Geologic History

The igneous and metamorphic crystalline basement rock of New York formed in the Precambrian and are coterminous with the Canadian Shield. The Adirondack Mountains, Thousand Islands, Hudson Highlands, and Fordham gneiss, along with outcrops in the Berkshires just over the state line in Massachusetts, are part of the Grenville Province, a large piece of continental crust which accreted to the Canadian Shield and underlies much of Quebec, Ontario as far west as Lake Huron and as far east as Labrador. These rocks date to 1.3 to 1.1 billion years ago in the Proterozoic and formed from lime mud, sand and clay on coastal barrier islands as well as evaporites in intervening lagoons. [1]

The Avalonian mountain building event 575 million years ago in the Neoproterozoic is poorly understood but deformed and metamorphosed the Hudson Highlands and Manhattan Prong.

Paleozoic (539-251 million years ago)

New York constituted a continental margin in the Paleozoic as multi-cellular life became common. As the proto-Atlantic Ocean opened, a marine transgression in the Cambrian and Ordovician flooded much of the region, with the Potsdam Sea transgressing westward.

A reversal in mantle convection currents around 445 million years ago, in the Middle Ordovician, launched the Taconic orogeny and closed the Iapetus Ocean. Crustal shortening caused a large section of continental crust in the west to thrust beneath the crust to the east, resulting in partial melting and the creation of an island arc. This complex tectonic situation produced intense folding, fracturing, thrust faults and large landslides which are now preserved in the Taconic Mountains. It also led to the intrusion of the Cortlandt and Croton Falls igneous complexes, in the vicinity of Peekskill.

The current day Taconic Mountains are the stubs of towering ancient mountains, as evidenced by high-pressure metamorphism indicating that extant rocks were buried under miles of overburden, which subsequently eroded. The sedimentation pattern changed from gradual deposition toward the east to much more rapid sedimentation to the west, filling in the Queenston Delta from the late Ordovician onward into a shallow sea. At the end of the Taconic orogeny, an unconformity appears with the uplift and erosion of the massive delta.

In the Silurian and Devonian, new sediments covered the erosional surface, beginning with the white quartz pebbles of the Shawangunk conglomerate. Crustal stretching created a series horst and graben features, which remain in the Adirondacks as well as in the Mohawk, Hudson and Champlain areas. Down-dropped grabens preserved Ordovician rock from erosion.

Between 375 and 335 million years ago, the proto-Atlantic Ocean closed, forming the supercontinent Pangaea. The Acadian orogeny formed a massive range, much taller than the heavily eroded Taconics further to the east. Rocks in what is now eastern New York as far west as the Adirondacks was "overprinted" with new mineral assemblages forming due to deformation that had begun in the Taconic orogeny.

The newly formed mountains rapidly eroded and shed sediments, even as uplift continued. A massive apron of sediment formed the Catskill Delta to the westward, burying much of the Taconics and filling in a shallow sea. The Catskill Mountains formed through erosion of the debris field from the Acadian mountains.

The Peekskill granite intruded after the orogeny, in Westchester County, between 335 and 320 million years ago. Around 250 million years ago, the final Appalachian mountain orogeny, the Alleghanian orogeny occurred. Geologists debate whether gentle east–west folds in the Alleghany Plateau are remnants of this orogeny. [2]

Mesozoic (251-66 million years ago)

The Newark Lowlands of the Newark Basin extends into New York between the Hudson Highlands and the Manhattan Prong. The basin formed beginning 220 million years ago during the late Triassic as Pangea rifted apart. Failed rift basins like the Newark Basin filled with thick sequences of sediment. The Stockton Formation is the lowest unit, with feldspar rich sandstone and conglomerate alternating with layers of shale mudstone. A rift valley lake deposited the mudstone and black shale of the middle unit—the Lockatong Formation—which holds extremely well preserved fossilized freshwater fish. This is, in turn, is overlain by the red-brown shale mudstone and sandstone of the Brunswick Formation which merges with the Hammer Creek Conglomerate. Because rifting thinned the crust, magma upwelled and intruded the basin, producing the feldspar and pyroxene dominant diabase of the Palisades Sill and an almost pure layer olivine up to six meters thick. The sill intruded 195 million years ago in the Early Jurassic. Cooling of the melt led to columnar fracture giving its column-like appearance. Fractional crystallization of what may have been the same magma also left behind the Ladentown Basalt. Lakeshore mud preserved the footprints of a predatory coelophysis in New York along with fossilized fish, clams and arthropods. [3]

Offshore of New York is the Fall Zone Peneplain, an area of much more ancient crystalline rocks that forms the slowly sinking continental shelf of eastern North America. Eroded nearly flat, this surface began to be covered by the current sediments of the Atlantic coastal plain beginning in the Jurassic. In fact, the current basement rocks date to a time span between the Proterozoic and early Jurassic. Recent geologic research has revealed the Baltimore Canyon Trough, a long basin south of Long Island filled with up to 12 kilometers of rock. Sedimentary rocks are about six kilometers thick in the Long Island Platform. Some of the thinnest sediments are only 600 meters thick at Fire Island.

A research well, COST B-3 drilled 130 kilometers off of Long Island in the Baltimore Canyon Trough, encountering two-kilometer thick rocks from the Cretaceous. Most rocks offshore are marl with some clay and limestone. The green mineral glauconite is particularly common. [4]

Cenozoic (66 million years ago-present)

Aside from sediments produced or moved by glaciers, rivers and streams during the last 2.5 million years of the Quaternary, Cenozoic rocks are extremely rare in New York. A small Oligocene lignite deposit near Brandon, Vermont may extend into New York. Several kilometers of rock eroded and deposited offshore in the Atlantic coastal plain and eastern North American continental shelf.

Drilling offshore of New Jersey and Long Island indicates Cenozoic sediments 130 meters thick reaching up to 1.5 kilometers thick near the edge of the continental shelf. The biggest increase in thickness took place during the Miocene. Deeply weathered saprolite soils formed throughout the region, with small remnants found in New York City, the Adirondacks, and Catskills during highway construction.

Rivers responsible for transporting sediment out of the region were significantly rechanneled or filled with sediments during the Pleistocene glaciations. The Erian River once downcut Middle Devonian shales, feeding into the Erie Basin while the Ontarian River eroded Ordovician shales into the Ontario Basin. The Sound River has been inferred as an eastward flowing river replaced by Long Island Sound. [5]

Related Research Articles

<span class="mw-page-title-main">Geology of the Appalachians</span> Geologic description of the Appalachian Mountains

The geology of the Appalachians dates back more than 1.1 billion years to the Mesoproterozoic era when two continental cratons collided to form the supercontinent Rodinia, 500 million years prior to the later development of the range during the formation of the supercontinent Pangea. The rocks exposed in today's Appalachian Mountains reveal elongate belts of folded and thrust faulted marine sedimentary rocks, volcanic rocks and slivers of ancient ocean floor – strong evidence that these rocks were deformed during plate collision. The birth of the Appalachian ranges marks the first of several mountain building plate collisions that culminated in the construction of the supercontinent Pangea with the Appalachians and neighboring Anti-Atlas mountains near the center. These mountain ranges likely once reached elevations similar to those of the Alps and the Rocky Mountains before they were eroded.

<span class="mw-page-title-main">Acadian orogeny</span> North American orogeny

The Acadian orogeny is a long-lasting mountain building event which began in the Middle Devonian, reaching a climax in the early Late Devonian. It was active for approximately 50 million years, beginning roughly around 375 million years ago, with deformational, plutonic, and metamorphic events extending into the Early Mississippian. The Acadian orogeny is the third of the four orogenies that formed the Appalachian orogen and subsequent basin. The preceding orogenies consisted of the Potomac and Taconic orogeny, which followed a rift/drift stage in the Late Neoproterozoic. The Acadian orogeny involved the collision of a series of Avalonian continental fragments with the Laurasian continent. Geographically, the Acadian orogeny extended from the Canadian Maritime provinces migrating in a southwesterly direction toward Alabama. However, the Northern Appalachian region, from New England northeastward into Gaspé region of Canada, was the most greatly affected region by the collision.

<span class="mw-page-title-main">Taconic orogeny</span> Mountain-building period that affected most of New England

The Taconic orogeny was a mountain building period that ended 440 million years ago and affected most of modern-day New England. A great mountain chain formed from eastern Canada down through what is now the Piedmont of the East coast of the United States. As the mountain chain eroded in the Silurian and Devonian periods, sediments from the mountain chain spread throughout the present-day Appalachians and midcontinental North America.

<span class="mw-page-title-main">Geology of Pennsylvania</span> Overview of the geology of the U.S. state of Pennsylvania

The Geology of Pennsylvania consists of six distinct physiographic provinces, three of which are subdivided into different sections. Each province has its own economic advantages and geologic hazards and plays an important role in shaping everyday life in the state. From the southeast corner to the northwest corner of the state, the include: the Atlantic Plain Province province, the Piedmont Province, the New England Province, the Ridge and Valley Province, the Appalachain Province, and the Central Lowlands Province.

<span class="mw-page-title-main">Geology of the Iberian Peninsula</span> Origins, structure, use and study of the rock formations of Spain, Portugal, Andorra and Gibraltar

The geology of the Iberian Peninsula consists of the study of the rock formations on the Iberian Peninsula, which includes Spain, Portugal, Andorra, and Gibraltar. The peninsula contains rocks from every geological period from the Ediacaran to the Quaternary, and many types of rock are represented. World-class mineral deposits are also found there.

<span class="mw-page-title-main">Geology of West Virginia</span>

West Virginia's geologic history stretches back into the Precambrian, and includes several periods of mountain building and erosion. At times, much of what is now West Virginia was covered by swamps, marshlands, and shallow seas, accounting for the wide variety of sedimentary rocks found in the state, as well as its wealth of coal and natural gas deposits. West Virginia has had no active volcanism for hundreds of millions of years, and does not experience large earthquakes, although smaller tremors are associated with the Rome Trough, which passes through the western part of the state.

<span class="mw-page-title-main">Laurentia</span> A large continental craton that forms the ancient geological core of the North American continent

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and also the northwestern part of Scotland, known as the Hebridean Terrane. During other times in its past, Laurentia has been part of larger continents and supercontinents and itself consists of many smaller terranes assembled on a network of Early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

<span class="mw-page-title-main">Geology of Massachusetts</span>

The geology of Massachusetts includes numerous units of volcanic, intrusive igneous, metamorphic and sedimentary rocks formed within the last 1.2 billion years. The oldest formations are gneiss rocks in the Berkshires, which were metamorphosed from older rocks during the Proterozoic Grenville orogeny as the proto-North American continent Laurentia collided against proto-South America. Throughout the Paleozoic, overlapping the rapid diversification of multi-cellular life, a series of six island arcs collided with the Laurentian continental margin. Also termed continental terranes, these sections of continental rock typically formed offshore or onshore of the proto-African continent Gondwana and in many cases had experienced volcanic events and faulting before joining the Laurentian continent. These sequential collisions metamorphosed new rocks from sediments, created uplands and faults and resulted in widespread volcanic activity. Simultaneously, the collisions raised the Appalachian Mountains to the height of the current day Himalayas.

<span class="mw-page-title-main">Geology of North America</span> Overview of the geology of North America

The geology of North America is a subject of regional geology and covers the North American continent, the third-largest in the world. Geologic units and processes are investigated on a large scale to reach a synthesized picture of the geological development of the continent.

<span class="mw-page-title-main">Geology of Somaliland</span>

The geology of Somaliland is very closely related to the geology of Somalia. Somaliland is a de facto independent country within the boundaries that the international community recognizes as Somalia. Because it encompasses the former territory of British Somaliland, the region is historically better researched than former Italian Somaliland. Somaliland is built on more than 700 million year old igneous and metamorphic crystalline basement rock.. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate.

The geology of Virginia began to form 1.8 billion years ago and potentially even earlier. The oldest rocks in the state were metamorphosed during the Grenville orogeny, a mountain building event beginning 1.2 billion years ago in the Proterozoic, which obscured older rocks. Throughout the Proterozoic and Paleozoic, Virginia experienced igneous intrusions, carbonate and sandstone deposition, and a series of other mountain building events which defined the terrain of the inland parts of the state. The closing of the Iapetus Ocean, to form the supercontinent Pangaea added additional small landmasses, some of which are now hidden beneath thick Atlantic Coastal Plain sediments. The region subsequently experienced the rifting open of the Atlantic Ocean in the Mesozoic, the development of the Coastal Plain, isolated volcanism and a series of marine transgressions that flooded much of the area. Virginia has extensive coal, deposits of oil and natural gas, as well as deposits of other minerals and metals, including vermiculite, kyanite and uranium.

The geology of Ohio formed beginning more than one billion years ago in the Proterozoic eon of the Precambrian. The igneous and metamorphic crystalline basement rock is poorly understood except through deep boreholes and does not outcrop at the surface. The basement rock is divided between the Grenville Province and Superior Province. When the Grenville Province crust collided with Proto-North America, it launched the Grenville orogeny, a major mountain building event. The Grenville mountains eroded, filling in rift basins and Ohio was flooded and periodically exposed as dry land throughout the Paleozoic. In addition to marine carbonates such as limestone and dolomite, large deposits of shale and sandstone formed as subsequent mountain building events such as the Taconic orogeny and Acadian orogeny led to additional sediment deposition. Ohio transitioned to dryland conditions in the Pennsylvanian, forming large coal swamps and the region has been dryland ever since. Until the Pleistocene glaciations erased these features, the landscape was cut with deep stream valleys, which scoured away hundreds of meters of rock leaving little trace of geologic history in the Mesozoic and Cenozoic.

<span class="mw-page-title-main">Geology of Arizona</span> Overview of the geology of Arizona

The geology of Arizona began to form in the Precambrian. Igneous and metamorphic crystalline basement rock may have been much older, but was overwritten during the Yavapai and Mazatzal orogenies in the Proterozoic. The Grenville orogeny to the east caused Arizona to fill with sediments, shedding into a shallow sea. Limestone formed in the sea was metamorphosed by mafic intrusions. The Great Unconformity is a famous gap in the stratigraphic record, as Arizona experienced 900 million years of terrestrial conditions, except in isolated basins. The region oscillated between terrestrial and shallow ocean conditions during the Paleozoic as multi-cellular life became common and three major orogenies to the east shed sediments before North America became part of the supercontinent Pangaea. The breakup of Pangaea was accompanied by the subduction of the Farallon Plate, which drove volcanism during the Nevadan orogeny and the Sevier orogeny in the Mesozoic, which covered much of Arizona in volcanic debris and sediments. The Mid-Tertiary ignimbrite flare-up created smaller mountain ranges with extensive ash and lava in the Cenozoic, followed by the sinking of the Farallon slab in the mantle throughout the past 14 million years, which has created the Basin and Range Province. Arizona has extensive mineralization in veins, due to hydrothermal fluids and is notable for copper-gold porphyry, lead, zinc, rare minerals formed from copper enrichment and evaporites among other resources.

The geology of Austria consists of Precambrian rocks and minerals together with younger marine sedimentary rocks uplifted by the Alpine orogeny.

<span class="mw-page-title-main">Geology of Colorado</span> Overview of the geology of Colorado

The bedrock of Colorado was assembled from island arcs accreted onto the edge of the ancient Wyoming Craton. The Sonoma orogeny uplifted the ancestral Rocky Mountains in parallel with the diversification of multicellular life. Shallow seas covered the regions, followed by the uplift current Rocky Mountains and intense volcanic activity. Colorado has thick sedimentary sequences with oil, gas and coal deposits, as well as base metals and other minerals.

The geology of North Carolina includes ancient Proterozoic rocks belonging to the Grenville Province in the Blue Ridge. The region experienced igneous activity and the addition of new terranes and orogeny mountain building events throughout the Paleozoic, followed by the rifting of the Atlantic Ocean and the deposition of thick sediments in the Coastal Plain and offshore waters.

<span class="mw-page-title-main">Geology of Kyrgyzstan</span>

The geology of Kyrgyzstan began to form during the Proterozoic. The country has experienced long-running uplift events, forming the Tian Shan mountains and large, sediment filled basins.

The geology of Newfoundland and Labrador includes basement rocks formed as part of the Grenville Province in the west and Labrador and the Avalonian microcontinent in the east. Extensive tectonic changes, metamorphism and volcanic activity have formed the region throughout Earth history.

The geology of Yukon includes sections of ancient Precambrian Proterozoic rock from the western edge of the proto-North American continent Laurentia, with several different island arc terranes added through the Paleozoic, Mesozoic and Cenozoic, driving volcanism, pluton formation and sedimentation.

The geology of the Norwegian Sea began to form 60 million years ago in the early Cenozoic, as rifting led to the eruption of mafic oceanic crust, separating Scandinavia and Greenland. Together with the North Sea the Norwegian Sea has become highly researched since the 1960s with the discovery of oil and natural gas in thick offshore sediments on top of the Norwegian continental shelf.

References

  1. Van Diver, Bradford B. (1985). Roadside Geology of New York. Mountain Press Publishing Company. pp. 18–21. ISBN   978-0-87842-180-0.
  2. Van Diver 1985, p. 22-28.
  3. Isachsen, Y.W.; Lauber, J.M.; Landing, Ed; Rickard, L.V.; Rogers, W.B. (2000). Geology of New York: A Simplified Edition. New York State Education Department. pp. 270–280.
  4. Isachsen et al. 2000, p. 285-289.
  5. Isachsen et al. 2000, p. 295-299.