Geology of South Dakota

Last updated
Badlands National Park MK00609 Badlands.jpg
Badlands National Park

The geology of South Dakota began to form more than 2.5 billion years ago in the Archean eon of the Precambrian. Igneous crystalline basement rock continued to emplace through the Proterozoic, interspersed with sediments and volcanic materials. Large limestone and shale deposits formed during the Paleozoic, during prevalent shallow marine conditions, followed by red beds during terrestrial conditions in the Triassic. The Western Interior Seaway flooded the region, creating vast shale, chalk and coal beds in the Cretaceous as the Laramide orogeny began to form the Rocky Mountains. The Black Hills were uplifted in the early Cenozoic, followed by long-running periods of erosion, sediment deposition and volcanic ash fall, forming the Badlands and storing marine and mammal fossils. Much of the state's landscape was reworked during several phases of glaciation in the Pleistocene. [1] South Dakota has extensive mineral resources in the Black Hills and some oil and gas extraction in the Williston Basin. The Homestake Mine, active until 2002, was a major gold mine that reached up to 8000 feet underground and is now used for dark matter and neutrino research.

Contents

Stratigraphy, tectonics and geologic history

The oldest rocks in South Dakota date to the Archean eon of the Precambrian, over 2.5 billion years ago. The Archean crystalline basement rock formed with the intrusion of the Little Elk and Bear Mountain granites, with interceding periods of volcanic activity, mountain building and shale deposition. Marine sandstones and clays and deposited during the Proterozoic and the Harney Peak granite emplaced around 1.71 billion years ago. The Neoproterozoic was marked by a long period of erosion in the stratigraphic record.

Paleozoic (541–251 million years ago)

In the Cambrian, at the start of the Paleozoic in parallel with the rapid proliferation of multi-cellular life, terrestrial erosion continued in the region. The area was flooded during a large scale marine transgression in the Late Cambrian through the Ordovician, as limestone, sandstone and shale deposited. The Sioux quartzite was likely the only point of high topography, rising above a flat plain which was invaded with seawater. The Deadwood Formation formed during this period, exposed as a 400-foot thick unit in the walls of the Spearfish Canyon, ranging to 50 feet thick by Wind Cave. Cambrian rocks are only exposed in the Black Hills and disappear in boreholes drilled to the south of Wind Cave, beyond the ancient shoreline. However, the Deadwood Formation reaches a thickness of 700 feet in wells in the northwest.

The Deadwood Formation is beach sand and gravel at its base, but as the ancient shoreline moved eastward, thin layers of mudstone and limestone formed in the west, in deeper waters. The formation contains trilobite fossils and tracks left by worms, exposed at low tide. Intraformational conglomerate is also common, resulting from fragments of limestone broken up in waves The Silurian and Devonian were marked by more carbonate deposition, particularly within the Williston Basin, east to central South Dakota. During the Mississippian period of the Carboniferous, widespread terrestrial erosion affected all but the north-central part of the state. Additional limestone deposits formed in the Early Mississippian. A marine environment prevailed in the Pennsylvanian, as sandstones, carbonates and evaporites deposited.

Sea levels receded in the Permian, marked by erosion in the east and continued marine deposition in the west. [2]

Mesozoic (251–66 million years)

Red beds formed throughout the west, during the Triassic, at the start of the Mesozoic. The region returned to terrestrial conditions in the Jurassic, with extensive erosion, and then returned to a shallow marine environment in the Cretaceous, depositing thick sequences of black Pierre shale—the thickest and most widespread sedimentary unit in the state. Originally, the shale ranged between 2500 feet thick at the Wyoming line and only tens of feet thick in the east, although erosion stripped it away in the Black Hills. The Laramide orogeny began the uplift of the Rocky Mountains during the Cretaceous.

West of the Missouri River, the Niobrara chalk formed in the inland sea during the Cretaceous, which contains mosasaur and plesiosaur bones. Tepee buttes form as small, conical hills in the Pierre shale landscape, from lenses of more erosion resistant limestone. Beach sand coal sequences left behind as the up to 200 feet thick Fox Hills Formation after the Western Interior Seaway began to recede, 15 million years after the Pierre shale first started to form. Low permeability shale yielded a poorly drained landscape, cut streams and rivers, which brought in large amounts of sediment—clay, silt and sand up to 500 feet thick—which deposited as the Hell Creek Formation. The formation contains thin lignite beds, triceratops and tyrannosaurus bones.

Like many other locations around the world, South Dakota preserves the inch thick boundary clay, left by the asteroid impact of the K-Pg mass extinction 66 million years ago. Below the boundary clay, fossil pollen from large fields is common, but pollen is uncommon for a long period in the record afterward. [3]

Cenozoic (66 million years ago-present)

Following the retreat of the Cretaceous inland sea, the Black Hills were uplifted, accompanied by igneous activity in the Paleocene at the start of the Cenozoic. The Pierre shale east of the Black Hills eroded into an undulating plain. The Ludlow Formation is up to 350 feet thick and in the northwest contains no obvious break in continental deposition at the time of the mass extinction, except for being sandier and less well-cemented. Further east, the formation contains the subsidiary Cannonball Formation, deposited during a brief resurgence of the inland sea and bearing fossil oysters, snails and clams. The 300 feet of sandstone and lignite of the Tongue River Formation overlies the Ludlow Formation, getting thicker to the east and holding some of the major coal deposits found in northern Wyoming.

In the northwest, the Ludlow, Cannonball and Tongue River formations are categorized as the Fort Union Group, with thick sandstone layers sourced from the Rocky Mountains.

Throughout the Eocene, the Black Hills eroded, shedding debris into the east, during a period with sub-tropical temperatures. Iron pyrite in shales oxidized, becoming bright red and yellow iron oxides. Sediments did not accumulate in the region until the end of the Eocene, as large streams carried material away to the ocean. Volcanic rocks from the Eocene preserve petrified trees.

The Oligocene brought a shift in the climate to arid conditions, transforming the region into a vast alluvial desert plain. Up to 600 feet of sands and clays, buried the Black Hills within 2000 feet of their crests in western South Dakota, forming the White River Formation, while some erosion occurred in the east. Gravel deposits containing crocodile bones and land snails, tortoises and hackberry seeds are also common in the fossil record. Bird bones and even fossil duck eggs have been found in association with clams, snails and the remains of algal mats in temporary ponds.

Since the 1800s, geologists have debated how to subdivide the White River Formation. The Chadron Formation is the lower unit, covering over the oxidizing Eocene erosion surface and reaching up to 180 feet thick. The thickness of the formation varies widely, where it fills into pre-existing valleys or blankets hills. It contains light-green bentonite clay, with a high shrink-swell capacity, as well as lenses of limestone containing snail, clam and algae remains from ponds. Titanotherium fossils and other large mammals have been found in the formation. Due to the high concentration of clay and the ease with which it erodes, the Chadron Formation tends to form gentle sloping hills and buttes. The overlying Brule Formation encompasses clay laid down by water, windblown sand, silt and volcanic ash, with a maximum thickness of up to 450 feet. Desert caliche soils are sometimes preserved as lime nodules and small clay buttes are often capped by well-cemented channel sands and gravels. The Brule Formation erodes into the jagged pinnacles of the Badlands. By the late 1990s, paleontologists had discovered 150 genera of mammals, ranging between rodents and rhinoceroses, as well as horses and camels. At the end of its five million year deposition, the formation was capped with the brilliantly white Rocky Ford ash, the windfall from powerful rhyolite eruptions in the Western Cascades in Oregon.

Smaller volumes of light-colored sand and clay deposited in the Miocene, but the period came with a return to warm and wet conditions. Revitalized streams carried away large amounts of sediments, wiping out much of the White River Formation. Hundreds of feet of younger sediment cover the White River group in southwest South Dakota. Miocene sandstones, which often form cliffs, often overlay the White River Formation.

A period of erosion occurred in South Dakota during the Pliocene. Particularly in western South Dakota, the mobilization of coarse sediments formed the Ogallala aquifer. [4] In the Pleistocene ice ages, South Dakota experienced multiple sequences of glaciation. [5] The oldest glacial drift deposits are in the southeast, at Sioux Falls and Newton Hills, overlain by deeply weathered Illinoisan, or potentially pre-Illinoisan age material. A large expanse of till fills the James River lowland and beyond the Missouri River, with an uncertain age, often thought to be the Wisconsin glaciation. The Brookings till plain is a belt of heavily weathered ground moraine, running through Brookings. Dating to the Illinoisan, it escaped burial by the Wisconsin ice sheet. A narrow strip in the central Prairie Hills holds the Toronto till plain, the oldest definitively Wisconsin drift, while the Bemis stage on the eastern edge of the hills formed a belt of moraines. Although the ice did not advance east of the Prairie Hills, it left a remaining moraine ridge, known as the Altamont stage, which encroaches the western side of the hills. Late in the Wisconsin, the ice sheet divided at the Prairie Hills, extending the Des Moines lobe to the east and a western lobe along the James River valley. A final advance of the glacier, known as the Big Stone stage, traced the Minnesota River lowland in the northeast. [6] [7]

Natural resource geology

The Black Hills were extensively explored and periodically mined for silver, gold, mica, tungsten, feldspar, bentonite, beryl, lead, zinc, uranium, lithium and sand, as well as oil, beginning in the 1870s. [8] The Homestake Mining Company, which managed the Homestake Mine until its closure in 2002, merged the Deadwood, Golden Terra, Father DeSmet and Caledonia gold mines around 1900. Its employees used emerging pneumatic drill technology and cyanide processing, creating the Ross Shaft and Yates Shaft—both 5000 feet deep—by 1941. Mine activity was suspended during World War II and resumed. By the mine's centennial in 1976, it was 8000 feet deep and had produced 31 million ounces of gold, seven million ounces of silver and 115 million tons of milled ore.

After its closure, the location was deemed a Superfund site, although the shafts are now reused for the Sanford Underground Research Facility, the largest underground laboratory in the US, used for dark matter and neutrino research. Southwest of Lead, South Dakota, there is still an active open pit gold mine, run by Goldcorp. [9]

South Dakota has oil and gas production in the Williston Basin in the northwest, although it produces only one percent of the US total, primarily from traditional vertical wells. One hundred wells produce 1.6 million gallons of oil annually. Almost all production is centered in a 400 square mile area within Harding County, relying on the Red River Formation. [10]

Related Research Articles

<span class="mw-page-title-main">Geology of the Zion and Kolob canyons area</span> Geology of Zion National Park in Utah

The geology of the Zion and Kolob canyons area includes nine known exposed formations, all visible in Zion National Park in the U.S. state of Utah. Together, these formations represent about 150 million years of mostly Mesozoic-aged sedimentation in that part of North America. Part of a super-sequence of rock units called the Grand Staircase, the formations exposed in the Zion and Kolob area were deposited in several different environments that range from the warm shallow seas of the Kaibab and Moenkopi formations, streams and lakes of the Chinle, Moenave, and Kayenta formations to the large deserts of the Navajo and Temple Cap formations and dry near shore environments of the Carmel Formation.

The exposed geology of the Bryce Canyon area in Utah shows a record of deposition that covers the last part of the Cretaceous Period and the first half of the Cenozoic era in that part of North America. The ancient depositional environment of the region around what is now Bryce Canyon National Park varied from the warm shallow sea in which the Dakota Sandstone and the Tropic Shale were deposited to the cool streams and lakes that contributed sediment to the colorful Claron Formation that dominates the park's amphitheaters.

<span class="mw-page-title-main">Geology of the Grand Teton area</span>

The geology of the Grand Teton area consists of some of the oldest rocks and one of the youngest mountain ranges in North America. The Teton Range, partly located in Grand Teton National Park, started to grow some 9 million years ago. An older feature, Jackson Hole, is a basin that sits aside the range.

<span class="mw-page-title-main">Geology of the Capitol Reef area</span>

The exposed geology of the Capitol Reef area presents a record of mostly Mesozoic-aged sedimentation in an area of North America in and around Capitol Reef National Park, on the Colorado Plateau in southeastern Utah.

<span class="mw-page-title-main">Geology of Dorset</span>

Dorset is a county in South West England on the English Channel coast. Covering an area of 2,653 square kilometres (1,024 sq mi); it borders Devon to the west, Somerset to the north-west, Wiltshire to the north-east, and Hampshire to the east. The great variation in its landscape owes much to the underlying geology, which includes an almost unbroken sequence of rocks from 200 to 40 million years ago (Mya) and superficial deposits from 2 Mya to the present. In general, the oldest rocks appear in the far west of the county, with the most recent (Eocene) in the far east. Jurassic rocks also underlie the Blackmore Vale and comprise much of the coastal cliff in the west and south of the county; although younger Cretaceous rocks crown some of the highpoints in the west, they are mainly to be found in the centre and east of the county.

<span class="mw-page-title-main">Geology of the Dallas–Fort Worth Metroplex</span>

The Dallas–Fort Worth Metroplex sits above Cretaceous-age strata ranging from ≈145-66 Ma. These Cretaceous-aged sediments lie above the eroded Ouachita Mountains and the Fort Worth Basin, which was formed by the Ouachita Orogeny. Going from west to east in the DFW Metroplex and down towards the Gulf of Mexico, the strata get progressively younger. The Cretaceous sediments dip very gently to the east.

<span class="mw-page-title-main">Geology of Bangladesh</span>

The Geology of Bangladesh is affected by the country's location, as Bangladesh is mainly a riverine country. It is the eastern two-thirds of the Ganges and Brahmaputra river delta plain stretching to the north from the Bay of Bengal. There are two small areas of slightly higher land in the north-centre and north-west composed of old alluvium called the Madhupur Tract and the Barind Tract, and steep, folded, hill ranges of older (Tertiary) rocks along the eastern border.

<span class="mw-page-title-main">Williston Basin</span> Sedimentary basin in Montana, United States

The Williston Basin is a large intracratonic sedimentary basin in eastern Montana, western North Dakota, South Dakota, southern Saskatchewan, and south-western Manitoba that is known for its rich deposits of petroleum and potash. The basin is a geologic structural basin but not a topographic depression; it is transected by the Missouri River. The oval-shaped depression extends approximately 475 miles (764 km) north-south and 300 miles (480 km) east-west.

<span class="mw-page-title-main">Geology of Kansas</span>

The geology of Kansas encompasses the geologic history and the presently exposed rock and soil. Rock that crops out in the US state of Kansas was formed during the Phanerozoic eon, which consists of three geologic eras: the Paleozoic, Mesozoic and Cenozoic. Paleozoic rocks at the surface in Kansas are primarily from the Mississippian, Pennsylvanian, and Permian periods.

Geologically the Australian state of New South Wales consists of seven main regions: Lachlan Fold Belt, the Hunter-Bowen Orogeny or New England Orogen (NEO), the Delamerian Orogeny, the Clarence Moreton Basin, the Great Artesian Basin, the Sydney Basin, and the Murray Basin.

The geology of Nebraska is part of the broader geology of the Great Plains of the central United States. Nebraska's landscape is dominated by surface features, soil and aquifers in loosely compacted sediments, with areas of the state where thick layers of sedimentary rock outcrop. Nebraska's sediments and sedimentary rocks lie atop a basement of crystalline rock known only through drilling.

<span class="mw-page-title-main">Geology of Virginia</span>

The geology of Virginia began to form 1.8 billion years ago and potentially even earlier. The oldest rocks in the state were metamorphosed during the Grenville orogeny, a mountain building event beginning 1.2 billion years ago in the Proterozoic, which obscured older rocks. Throughout the Proterozoic and Paleozoic, Virginia experienced igneous intrusions, carbonate and sandstone deposition, and a series of other mountain building events which defined the terrain of the inland parts of the state. The closing of the Iapetus Ocean, to form the supercontinent Pangaea added additional small landmasses, some of which are now hidden beneath thick Atlantic Coastal Plain sediments. The region subsequently experienced the rifting open of the Atlantic Ocean in the Mesozoic, the development of the Coastal Plain, isolated volcanism and a series of marine transgressions that flooded much of the area. Virginia has extensive coal, deposits of oil and natural gas, as well as deposits of other minerals and metals, including vermiculite, kyanite and uranium.

The geology of Ohio formed beginning more than one billion years ago in the Proterozoic eon of the Precambrian. The igneous and metamorphic crystalline basement rock is poorly understood except through deep boreholes and does not outcrop at the surface. The basement rock is divided between the Grenville Province and Superior Province. When the Grenville Province crust collided with Proto-North America, it launched the Grenville orogeny, a major mountain building event. The Grenville mountains eroded, filling in rift basins and Ohio was flooded and periodically exposed as dry land throughout the Paleozoic. In addition to marine carbonates such as limestone and dolomite, large deposits of shale and sandstone formed as subsequent mountain building events such as the Taconic orogeny and Acadian orogeny led to additional sediment deposition. Ohio transitioned to dryland conditions in the Pennsylvanian, forming large coal swamps and the region has been dryland ever since. Until the Pleistocene glaciations erased these features, the landscape was cut with deep stream valleys, which scoured away hundreds of meters of rock leaving little trace of geologic history in the Mesozoic and Cenozoic.

The geology of Alberta encompasses parts of the Canadian Rockies and thick sedimentary sequences, bearing coal, oil and natural gas, atop complex Precambrian crystalline basement rock.

The geology of Mississippi includes some deep igneous and metamorphic crystalline basement rocks from the Precambrian known only from boreholes in the north, as well as sedimentary sequences from the Paleozoic. The region long experienced shallow marine conditions during the tectonic evolutions of the Mesozoic and Cenozoic, as coastal plain sediments accumulated up to 45,000 feet thick, including limestone, dolomite, marl, anhydrite and sandstone layers, with some oil and gas occurrences and the remnants of Cretaceous volcanic activity in some locations.

The geology of Missouri includes deep Precambrian basement rocks formed within the last two billion years and overlain by thick sequences of marine sedimentary rocks, interspersed with igneous rocks by periods of volcanic activity. Missouri is a leading producer of lead from minerals formed in Paleozoic dolomite.

<span class="mw-page-title-main">Geology of Wyoming</span> Overview of the geology of Wyoming

The geology of Wyoming includes some of the oldest Archean rocks in North America, overlain by thick marine and terrestrial sediments formed during the Paleozoic, Mesozoic and Cenozoic, including oil, gas and coal deposits. Throughout its geologic history, Wyoming has been uplifted several times during the formation of the Rocky Mountains, which produced complicated faulting that traps hydrocarbons.

<span class="mw-page-title-main">Geology of Utah</span>

The geology of Utah, in the western United States, includes rocks formed at the edge of the proto-North American continent during the Precambrian. A shallow marine sedimentary environment covered the region for much of the Paleozoic and Mesozoic, followed by dryland conditions, volcanism, and the formation of the basin and range terrain in the Cenozoic.

<span class="mw-page-title-main">Geology of North Dakota</span> Overview of the geology of the U.S. state of North Dakota

The geology of North Dakota includes thick sequences oil and coal bearing sedimentary rocks formed in shallow seas in the Paleozoic and Mesozoic, as well as terrestrial deposits from the Cenozoic on top of ancient Precambrian crystalline basement rocks. The state has extensive oil and gas, sand and gravel, coal, groundwater and other natural resources.

The geology of Montana includes thick sequences of Paleozoic, Mesozoic and Cenozoic sedimentary rocks overlying ancient Archean and Proterozoic crystalline basement rock. Eastern Montana has considerable oil and gas resources, while the uplifted Rocky Mountains in the west, which resulted from the Laramide orogeny and other tectonic events have locations with metal ore.

References

  1. Gries 1996.
  2. Gries 1996, p. 205–210.
  3. Gries 1996, p. 93–96.
  4. Gries 1996, p. 191–197.
  5. Gries 1996, p. 3.
  6. Gries 1996, p. 17.
  7. Driscoll et al. 1990.
  8. Driscoll et al. 1990, p. 2.
  9. "South Dakota Mining History". www.mininghistoryassociation.org. Retrieved 7 July 2018.
  10. "Industry Facts - South Dakota Oil and Gas Association". sdoil.org. Retrieved 7 July 2018.

Bibliography