Fox Hills Formation

Last updated
Fox Hills Formation
Stratigraphic range: Late Cretaceous, Maastrichtian
Fox Hills Formation 01.jpg
A ridge capped by a sandstone bed of the Fox Hills Formation west of Limon, Colorado
Type Geological formation
Unit of Montana Group (MT, ND)
Sub-unitsFairpoint member (SD),
Trail City member (ND, SD),
Timber Lake (ND, SD),
Lincoln member (CO), etc.
Underlies Lance (WY)/Hell Creek (MT) [1]
Laramie Formation (CO)
Overlies Pierre (USA)/Bearpaw (CAN) [1]
Lewis Shale (WY, MT) [1]
Thickness75-225 feet
Lithology
Primary Sandstone
Other Shale
Location
Region Alberta, Colorado, Montana, North Dakota, South Dakota and Wyoming
CountryUnited States/Canada
Type section
Named forFox Hills between Cheyenne and Moreau Rivers, South Dakota
Named by Meek and Hayden [1]
Year defined1862 [1]

The Fox Hills Formation is a Cretaceous geologic formation in the northwestern Great Plains of North America. It is present from Alberta on the north to Colorado in the south.

Contents

Fossil remains of dinosaurs, including tyrannosaurs, as well as large marine reptiles, such as mosasaurs, have been recovered from the formation. [2]

Lithology

The Fox Hills Formation consists of marginal marine yellow to grey sandstone with shale interbeds. [1] [3] It was deposited as a regressive sequence of barrier islands during the retreat of the Western Interior Seaway in Late Cretaceous time. [4] In its eastern extents, the formation is underlain by the marine Pierre Shale in the United States and by the equivalent Bearpaw Formation in Canada, while in western ranges in Montana and Wyoming it overlies the Lewis Shale. The Fox Hills is overlain by continental sediments of the Laramie Formation in Colorado and the Lance Formation in Wyoming, the later being the equivalent of the overlying Hell Creek Formation in Montana. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Front Range</span> Mountain range of the Southern Rocky Mountains of North America

The Front Range is a mountain range of the Southern Rocky Mountains of North America located in the central portion of the U.S. State of Colorado, and southeastern portion of the U.S. State of Wyoming. It is the first mountain range encountered as one goes westbound along the 40th parallel north across the Great Plains of North America.

<span class="mw-page-title-main">Morrison Formation</span> Rock formation in the western United States

The Morrison Formation is a distinctive sequence of Upper Jurassic sedimentary rock found in the western United States which has been the most fertile source of dinosaur fossils in North America. It is composed of mudstone, sandstone, siltstone, and limestone and is light gray, greenish gray, or red. Most of the fossils occur in the green siltstone beds and lower sandstones, relics of the rivers and floodplains of the Jurassic period.

<span class="mw-page-title-main">Lance Formation</span> Geological formation in the United States

The Lance (Creek) Formation is a division of Late Cretaceous rocks in the western United States. Named after Lance Creek, Wyoming, the microvertebrate fossils and dinosaurs represent important components of the latest Mesozoic vertebrate faunas. The Lance Formation is Late Maastrichtian in age, and shares much fauna with the Hell Creek Formation of Montana and North Dakota, the Frenchman Formation of southwest Saskatchewan, and the lower part of the Scollard Formation of Alberta.

<span class="mw-page-title-main">Cloverly Formation</span> Geological formation in the United States

The Cloverly Formation is a geological formation of Early and Late Cretaceous age that is present in parts of Montana, Wyoming, Colorado and Utah in the western United States. It was named for a post office on the eastern side of the Bighorn Basin in Wyoming by N.H. Darton in 1904. The sedimentary rocks of formation were deposited in floodplain environments and contain vertebrate fossils, including a diverse assemblage of dinosaur remains. In 1973, the Cloverly Formation Site was designated as a National Natural Landmark by the National Park Service.

<span class="mw-page-title-main">Dakota Formation</span> Rock units in midwestern North America

The Dakota is a sedimentary geologic unit name of formation and group rank in Midwestern North America. The Dakota units are generally composed of sandstones, mudstones, clays, and shales deposited in the Mid-Cretaceous opening of the Western Interior Seaway. The usage of the name Dakota for this particular Albian-Cenomanian strata is exceptionally widespread; from British Columbia and Alberta to Montana and Wisconsin to Colorado and Kansas to Utah and Arizona. It is famous for producing massive colorful rock formations in the Rocky Mountains and the Great Plains of the United States, and for preserving both dinosaur footprints and early deciduous tree leaves.

<span class="mw-page-title-main">Bearpaw Formation</span> Geologic formation in North America

The Bearpaw Formation, also called the Bearpaw Shale, is a geologic formation of Late Cretaceous (Campanian) age. It outcrops in the U.S. state of Montana, as well as the Canadian provinces of Alberta and Saskatchewan, and was named for the Bear Paw Mountains in Montana. It includes a wide range of marine fossils, as well as the remains of a few dinosaurs. It is known for its fossil ammonites, some of which are mined in Alberta to produce the organic gemstone ammolite.

<span class="mw-page-title-main">Pierre Shale</span> Geologic formation of the Upper Cretaceous from Pembina Valley in Canada to New Mexico, USA

The Pierre Shale is a geologic formation or series in the Upper Cretaceous which occurs east of the Rocky Mountains in the Great Plains, from Pembina Valley in Canada to New Mexico.

The Belly River Group is a stratigraphical unit of Late Cretaceous age in the Western Canadian Sedimentary Basin.

<span class="mw-page-title-main">Frontier Formation</span> Geological formation in the United States

The Frontier Formation is a sedimentary geological formation whose strata date back to the Late Cretaceous. The formation's extents are: northwest Colorado, southeast Idaho, southern Montana, northern Utah, and western Wyoming. It occurs in many sedimentary basins and uplifted areas.

<span class="mw-page-title-main">Pictured Cliffs Formation</span> Geologic formation in New Mexico and Colorado

The Pictured Cliffs Formation is a Campanian geologic formation in the San Juan Basin of New Mexico. Dinosaur remains are among the fossils that have been recovered from the formation, although none have yet been referred to a specific genus.

<span class="mw-page-title-main">Mowry Shale</span> Geologic formation in Wyoming, USA

The Mowry Shale is an Early Cretaceous geologic formation. The formation was named for Mowrie Creek, northwest of Buffalo in Johnson County, Wyoming.

<span class="mw-page-title-main">Carlile Shale</span> Geologic formation in the western US

The Carlile Shale is a Turonian age Upper/Late Cretaceous series shale geologic formation in the central-western United States, including in the Great Plains region of Colorado, Kansas, Nebraska, New Mexico, North Dakota, South Dakota, and Wyoming.

<span class="mw-page-title-main">Edmonton Group</span> Stratigraphic unit in central Alberta, Canada

Within the earth science of geology, the Edmonton Group is a Late Cretaceous to early Paleocene stratigraphic unit of the Western Canada Sedimentary Basin in the central Alberta plains. It was first described as the Edmonton Formation by Joseph Burr Tyrrell in 1887 based on outcrops along the North Saskatchewan River in and near the city of Edmonton. E.J.W. Irish later elevated the formation to group status and it was subdivided into four separate formations. In ascending order, they are the Horseshoe Canyon, Whitemud, Battle and Scollard Formations. The Cretaceous-Paleogene boundary occurs within the Scollard Formation, based on dinosaurian and microfloral evidence, as well as the presence of the terminal Cretaceous iridium anomaly.

<span class="mw-page-title-main">Paleontology in North Dakota</span> Paleontological research in the U.S. state of North Dakota

Paleontology in North Dakota refers to paleontological research occurring within or conducted by people from the U.S. state of North Dakota. During the early Paleozoic era most of North Dakota was covered by a sea home to brachiopods, corals, and fishes. The sea briefly left during the Silurian, but soon returned, until once more starting to withdraw during the Permian. By the Triassic some areas of the state were still under shallow seawater, but others were dry and hot. During the Jurassic subtropical forests covered the state. North Dakota was always at least partially under seawater during the Cretaceous. On land Sequoia grew. Later in the Cenozoic the local seas dried up and were replaced by subtropical swamps. Climate gradually cooled until the Ice Age, when glaciers entered the area and mammoths and mastodons roamed the local woodlands.

<span class="mw-page-title-main">Graneros Shale</span> Geological formation

The Graneros Shale is a geologic formation in the United States identified in the Great Plains as well as New Mexico that dates to the Cenomanian Age of the Cretaceous Period. It is defined as the finely sandy argillaceous or clayey near-shore/marginal-marine shale that lies above the older, non-marine Dakota sand and mud, but below the younger, chalky open-marine shale of the Greenhorn. This definition was made in Colorado by G. K. Gilbert and has been adopted in other states that use Gilbert's division of the Benton's shales into Carlile, Greenhorn, and Graneros. These states include Kansas, Texas, Oklahoma, Nebraska, and New Mexico as well as corners of Minnesota and Iowa. North Dakota, South Dakota, Wyoming, and Montana have somewhat different usages — in particular, north and west of the Black Hills, the same rock and fossil layer is named Belle Fourche Shale.

<span class="mw-page-title-main">Greenhorn Limestone</span> Geologic formation in the United States

The Greenhorn Limestone or Greenhorn Formation is a geologic formation in the Great Plains Region of the United States, dating to the Cenomanian and Turonian ages of the Late Cretaceous period. The formation gives its name to the Greenhorn cycle of the Western Interior Seaway.

<span class="mw-page-title-main">Benton Shale</span> Geologic formation (shale) in Montana, Wyoming, and other states

The Benton Shale is a geologic formation name historically used in Montana, Wyoming, North Dakota, South Dakota, Colorado, Kansas, and Nebraska. In the "mile high" plains in the center of the continent, the named layers preserve marine fossils from the Late Cretaceous Period. The term Benton Limestone has also been used to refer to the chalky portions of the strata, especially the beds of the strata presently classified as Greenhorn Limestone, particularly the Fencepost limestone.

The Thermopolis Shale is a geologic formation which formed in west-central North America in the Albian age of the Late Cretaceous period. Surface outcroppings occur in central Canada, and the U.S. states of Montana and Wyoming. The rock formation was laid down over about 7 million years by sediment flowing into the Western Interior Seaway. The formation's boundaries and members are not well-defined by geologists, which has led to different definitions of the formation. Some geologists conclude the formation should not have a designation independent of the formations above and below it. A range of invertebrate and small and large vertebrate fossils and coprolites are found in the formation.

<span class="mw-page-title-main">Lewis Shale</span> Geologic formation in the western United States

The Lewis Shale is a geologic formation in the Western United States. It preserves fossils dating back to the Campanian to Maastrichtian stages of the late Cretaceous period.

References

  1. 1 2 3 4 5 6 7 "Geologic Unit: Fox Hills". National Geologic Database. Geolex — Significant Publications. United States Geological Survey. Retrieved 2017-02-13.
  2. Getman, Myron RC (1994). "Occurrences of Mosasaur and other reptilian fossil remains from the Fox Hills Formation (Maastrichtian: late Cretaceous) of North Dakota" (Document). St. Lawrence University Dept. of Geology theses.
  3. Lexicon of Canadian Geologic Units. "Fox Hills Formation". Archived from the original on 2013-01-12. Retrieved 2010-02-01.
  4. Henry W. Roehler (1993). "Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent Parts of the Lewis Shale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest Wyoming". U.S. Geological Survey Professional Paper (1532). Washington: United States Government Printing Office.