Sole Source Aquifer

Last updated

A Sole Source Aquifer (SSA) is an aquifer that has been designated by the United States Environmental Protection Agency (EPA) as the sole or principal source of drinking water for an area. [1] By definition, SSA is an aquifer that supplies at least 50% of the drinking water consumed in the area overlying the aquifer. There may be other factors to designate SSA. [2] For example, in New York City, Kings and Queens Counties are designated as SSA not because the aquifer of these areas are the sole or principal sources of drinking water for these counties; they are designated as SSA because the geographic boundaries of Kings and Queens Counties are within the recharge zone for the aquifers underlying the southeastern portion of Queens County. [3] Groundwater beneath Manhattan and the Bronx is not used for drinking or non-potable purposes.

These areas may have no alternative drinking water source(s) that could physically, legally and economically supply all those who depend on the aquifer for drinking water and therefore, if contamination occurs, using an alternative source would be extremely expensive. SSA designation works as a tool to protect drinking water supplies in these areas. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Water quality</span> Assessment against standards for use

Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. The most common standards used to monitor and assess water quality convey the health of ecosystems, safety of human contact, extent of water pollution and condition of drinking water. Water quality has a significant impact on water supply and often determines supply options.

Methyl <i>tert</i>-butyl ether Chemical compound

Methyl tert-butyl ether (MTBE), also known as tert-butyl methyl ether, is an organic compound with a structural formula (CH3)3COCH3. MTBE is a volatile, flammable, and colorless liquid that is sparingly soluble in water. Primarily used as a fuel additive, MTBE is blended into gasoline to increase its octane rating and knock resistance, and reduce unwanted emissions.

<span class="mw-page-title-main">Reclaimed water</span> Converting wastewater into water that can be reused for other purposes

Water reclamation is the process of converting municipal wastewater or sewage and industrial wastewater into water that can be reused for a variety of purposes. It is also called wastewater reuse, water reuse or water recycling. There are many types of reuse. It is possible to reuse water in this way in cities or for irrigation in agriculture. Other types of reuse are environmental reuse, industrial reuse, and reuse for drinking water, whether planned or not. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. This latter is also known as groundwater recharge. Reused water also serve various needs in residences such as toilet flushing, businesses, and industry. It is possible to treat wastewater to reach drinking water standards. Injecting reclaimed water into the water supply distribution system is known as direct potable reuse. Drinking reclaimed water is not typical. Reusing treated municipal wastewater for irrigation is a long-established practice. This is especially so in arid countries. Reusing wastewater as part of sustainable water management allows water to remain an alternative water source for human activities. This can reduce scarcity. It also eases pressures on groundwater and other natural water bodies.

<span class="mw-page-title-main">Edwards Aquifer</span> Source of drinking water in Texas

The Edwards Aquifer is one of the most prolific artesian aquifers in the world. Located on the eastern edge of the Edwards Plateau in the U.S. state of Texas, it is the source of drinking water for two million people, and is the primary water supply for agriculture and industry in the aquifer's region. Additionally, the Edwards Aquifer feeds the Comal and San Marcos Springs, provides springflow for recreational and downstream uses in the Nueces, San Antonio, Guadalupe, and San Marcos river basins, and is home to several unique and endangered species.

<span class="mw-page-title-main">Safe Drinking Water Act</span> Primary federal law in the United States intended to ensure safe drinking water for the public

The Safe Drinking Water Act (SDWA) is the primary federal law in the United States intended to ensure safe drinking water for the public. Pursuant to the act, the Environmental Protection Agency (EPA) is required to set standards for drinking water quality and oversee all states, localities, and water suppliers that implement the standards.

Water supply and sanitation in the United States involves a number of issues including water scarcity, pollution, a backlog of investment, concerns about the affordability of water for the poorest, and a rapidly retiring workforce. Increased variability and intensity of rainfall as a result of climate change is expected to produce both more severe droughts and flooding, with potentially serious consequences for water supply and for pollution from combined sewer overflows. Droughts are likely to particularly affect the 66 percent of Americans whose communities depend on surface water. As for drinking water quality, there are concerns about disinfection by-products, lead, perchlorates, PFAS and pharmaceutical substances, but generally drinking water quality in the U.S. is good.

<span class="mw-page-title-main">Wood River (Pawcatuck River tributary)</span> River in Connecticut and Rhode Island, U.S.

The Wood River is a river in the U.S. states of Connecticut and Rhode Island. It flows approximately 25 miles (40 km) and is a major tributary of the Pawcatuck River. There are eight dams along the river's length.

<span class="mw-page-title-main">Surface water</span> Water located on top of land forming terrestrial bodies of water

Surface water is water located on top of land, forming terrestrial waterbodies, and may also be referred to as blue water, opposed to the seawater and waterbodies like the ocean.

Title 40 is a part of the United States Code of Federal Regulations. Title 40 arranges mainly environmental regulations that were promulgated by the US Environmental Protection Agency (EPA), based on the provisions of United States laws. Parts of the regulation may be updated annually on July 1.

An injection well is a device that places fluid deep underground into porous rock formations, such as sandstone or limestone, or into or below the shallow soil layer. The fluid may be water, wastewater, brine, or water mixed with industrial chemical waste.

A wellhead protection area is a surface and subsurface land area regulated to prevent contamination of a well or well-field supplying a public water system. This program, established under the Safe Drinking Water Act, is implemented through state governments.

<span class="mw-page-title-main">Water storage</span> Storage of water by various means

Water storage is a broad term referring to storage of both potable water for consumption, and non potable water for use in agriculture. In both developing countries and some developed countries found in tropical climates, there is a need to store potable drinking water during the dry season. In agriculture water storage, water is stored for later use in natural water sources, such as groundwater aquifers, soil water, natural wetlands, and small artificial ponds, tanks and reservoirs behind major dams. Storing water invites a host of potential issues regardless of that water's intended purpose, including contamination through organic and inorganic means.

<span class="mw-page-title-main">Groundwater pollution</span> Ground released seep into groundwater

Groundwater pollution occurs when pollutants are released to the ground and make their way into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant, or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution. Groundwater pollution can occur from on-site sanitation systems, landfill leachate, effluent from wastewater treatment plants, leaking sewers, petrol filling stations, hydraulic fracturing (fracking) or from over application of fertilizers in agriculture. Pollution can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.

Water in Arkansas is an important issue encompassing the conservation, protection, management, distribution and use of the water resource in the state. Arkansas contains a mixture of groundwater and surface water, with a variety of state and federal agencies responsible for the regulation of the water resource. In accordance with agency rules, state, and federal law, the state's water treatment facilities utilize engineering, chemistry, science and technology to treat raw water from the environment to potable water standards and distribute it through water mains to homes, farms, business and industrial customers. Following use, wastewater is collected in collection and conveyance systems, decentralized sewer systems or septic tanks and treated in accordance with regulations at publicly owned treatment works (POTWs) before being discharged to the environment.

<span class="mw-page-title-main">Spokane Valley–Rathdrum Prairie Aquifer</span>

The Spokane Valley–Rathdrum Prairie (SVRP) Aquifer is an aquifer in the northwest United States, underlying 370 square miles in eastern Washington and northern Idaho.

<span class="mw-page-title-main">Water contamination in Lawrence and Morgan Counties, Alabama</span>

Water contamination in Lawrence and Morgan Counties, Alabama, revolves around the presence of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in the water supply. After the US Environmental Protection Agency (EPA) released new health advisories in March 2016, there was concern over health risks of the levels of PFOA and PFOS present. The responses of different government officials, agencies, and companies raise questions as to whether or not there was any environmental injustice involved.

The Dorado Ground Water Contamination Site is one of 18 sites listed on the EPA’s National Priorities List in Puerto Rico, a territory of the United States, identified as posing a risk to human health and/or the environment because of a contamination plume in the underlying karst aquifer. Located in north-central Puerto Rico, 20 mi (32 km) to the west of the capital city, San Juan, the Dorado Ground Water Contamination site is located within the Maguayo and Dorado Urbano public water systems, and is the source of drinking water for more than 67,000 people. This site first came under scrutiny by officials in the 1980s and it was officially added to the EPA's Superfund list on September 9, 2016. The EPA is in the process of examining the precise extent and location of this contaminated groundwater plume and, at this time, the contaminants cannot be attributed to any specific source. In the wake of Hurricane Maria, the site has come under increased scrutiny because locals desperate for a source of safe drinking water have been using wells on the superfund site.

Groundwater pollution, also referred to as groundwater contamination, is not as easily classified as surface water pollution. Groundwater aquifers are susceptible to contamination from sources that may not directly affect surface water bodies.

<span class="mw-page-title-main">Wellhead protection program</span> US groundwater contamination law

The Wellhead Protection Program in the 1986 amendments to the Safe Drinking Water Act requires states to protect underground sources of drinking water from contaminants that may adversely affect human health. Over half of the U.S. population relies on groundwater for drinking water However, residential, municipal, commercial, industrial, and agricultural activities can all contaminate groundwater. In the event of contamination, a community's drinking water supply can develop poor quality or be lost altogether. Groundwater contamination occurs from products such as oil, chemicals, gasoline, or other toxic substances to infiltrate groundwater. These products can travel through soil and seep into the groundwater; this process can occur through landfills, septic tanks, mining sites, fertilization, etc. Groundwater contamination might not be detected for a long period of time and health problems can occur from drinking contaminated water. Cleanup of a contaminated underground source of drinking water may be impossible or so difficult it costs thousands or millions of dollars. The U.S. Congress requiring Wellhead Protection Programs by 42 U.S.C. § 300h–7 in the Safe Drinking Water Act applied the concept that it is better to prevent groundwater contamination than try to remediate it. U.S. Congress by 42 U.S.C. § 300h–7 requires identification of the areas that need implementation of control measures in order to protect public water supply wells from contamination as "wellhead protection areas". Communities can use the police power established by the Tenth Amendment to the U.S. Constitution to enforce zoning and subdivision regulations to protect drinking water sources. Thereby communities can direct development away from areas that would pose a threat to drinking water sources.

References

  1. "Sole Source Aquifer Protection Program". epa.gov. 29 May 2015.
  2. "Water - Region 2 - US EPA". epa.gov. 29 January 2013.
  3. "Natural Resources" (PDF). Archived from the original (PDF) on 2016-03-04.
  4. "Sole Source Aquifer Program". epa.gov. 29 January 2013.