Aquifer test

Last updated

An aquifer test (or a pumping test) is conducted to evaluate an aquifer by "stimulating" the aquifer through constant pumping, and observing the aquifer's "response" (drawdown) in observation wells. Aquifer testing is a common tool that hydrogeologists use to characterize a system of aquifers, aquitards and flow system boundaries.

Contents

A slug test is a variation on the typical aquifer test where an instantaneous change (increase or decrease) is made, and the effects are observed in the same well. This is often used in geotechnical or engineering settings to get a quick estimate (minutes instead of days) of the aquifer properties immediately around the well.

Aquifer tests are typically interpreted by using an analytical model of aquifer flow (the most fundamental being the Theis solution) to match the data observed in the real world, then assuming that the parameters from the idealized model apply to the real-world aquifer. In more complex cases, a numerical model may be used to analyze the results of an aquifer test.

Aquifer testing differs from well testing in that the behaviour of the well is primarily of concern in the latter, while the characteristics of the aquifer are quantified in the former. Aquifer testing also often utilizes one or more monitoring wells, or piezometers ("point" observation wells). A monitoring well is simply a well which is not being pumped (but is used to monitor the hydraulic head in the aquifer). Typically monitoring and pumping wells are screened across the same aquifers.

General characteristics

Most commonly an aquifer test is conducted by pumping water from one well at a steady rate and for at least one day, while carefully measuring the water levels in the monitoring wells. When water is pumped from the pumping well the pressure in the aquifer that feeds that well declines. This decline in pressure will show up as drawdown (change in hydraulic head) in an observation well. Drawdown decreases with radial distance from the pumping well and drawdown increases with the length of time that the pumping continues.

The aquifer characteristics which are evaluated by most aquifer tests are:

Additional aquifer characteristics which are sometimes evaluated, depending on the type of aquifer, include:

Analysis methods

An appropriate model or solution to the groundwater flow equation must be chosen to fit to the observed data. There are many different choices of models, depending on what factors are deemed important including:

Nearly all aquifer test solution methods are based on the Theis solution; it is built upon the most simplifying assumptions. Other methods relax one or more of the assumptions the Theis solution is built on, and therefore they get a more flexible (and more complex) result.

Transient Theis solution

Cross-sectional plot of transient Theis solution for radial distance vs drawdown over time Theis Equation.png
Cross-sectional plot of transient Theis solution for radial distance vs drawdown over time

The Theis equation was created by Charles Vernon Theis (working for the US Geological Survey) in 1935, [1] from heat transfer literature (with the mathematical help of C.I. Lubin), for two-dimensional radial flow to a point source in an infinite, homogeneous aquifer. It is simply

where s is the drawdown (change in hydraulic head at a point since the beginning of the test), u is a dimensionless time parameter, Q is the discharge (pumping) rate of the well (volume divided by time, or m³/s), T and S are the transmissivity and storativity of the aquifer around the well (m²/s and unitless, respectively), r is the distance from the pumping well to the point where the drawdown was observed (m), t is the time since pumping began (seconds), and W(u) is the "Well function" (called the exponential integral, E1, in non-hydrogeology literature). The well function is approximated by the infinite series

Typically this equation is used to find the average T and S values near a pumping well, from drawdown data collected during an aquifer test. This is a simple form of inverse modeling, since the result (s) is measured in the well, r, t, and Q are observed, and values of T and S which best reproduce the measured data are put into the equation until a best fit between the observed data and the analytic solution is found.

The Theis solution is based on the following assumptions:

Even though these assumptions are rarely all met, depending on the degree to which they are violated (e.g., if the boundaries of the aquifer are well beyond the part of the aquifer which will be tested by the pumping test) the solution may still be useful.

Steady-state Thiem solution

Steady-state radial flow to a pumping well is commonly called the Thiem solution, [2] it comes about from application of Darcy's law to cylindrical shell control volumes (i.e., a cylinder with a larger radius which has a smaller radius cylinder cut out of it) about the pumping well; it is commonly written as:

In this expression h0 is the background hydraulic head, h0-h is the drawdown at the radial distance r from the pumping well, Q is the discharge rate of the pumping well (at the origin), T is the transmissivity, and R is the radius of influence, or the distance at which the head is still h0. These conditions (steady-state flow to a pumping well with no nearby boundaries) never truly occur in nature, but it can often be used as an approximation to actual conditions; the solution is derived by assuming there is a circular constant head boundary (e.g., a lake or river in full contact with the aquifer) surrounding the pumping well at a distance R.

Sources of error

Of critical importance in both aquifer and well testing is the accurate recording of data. Not only must water levels and the time of the measurement be carefully recorded, but the pumping rates must be periodically checked and recorded. An unrecorded change in pumping rate of as little as 2% can be misleading when the data are analysed.[ citation needed ]

Related Research Articles

Hydrology Science of the movement, distribution, and quality of water on Earth and other planets

Hydrology is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and environmental watershed sustainability. A practitioner of hydrology is called a hydrologist. Hydrologists are scientists studying earth or environmental science, civil or environmental engineering, and physical geography. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.

Aquifer Underground layer of water-bearing permeable rock

An aquifer is an underground layer of water-bearing permeable rock, rock fractures or unconsolidated materials.

Water table Top of a saturated aquifer, or where the water pressure head is equal to the atmospheric pressure

The water table is the upper surface of the zone of saturation. The zone of saturation is where the pores and fractures of the ground are saturated with water. It can also be simply explained as the depth below which the ground is saturated.

Groundwater Water located beneath the ground surface

Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

Hydrogeology Study of the distribution and movement of groundwater

Hydrogeology is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust. The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably.

A well test is conducted to evaluate the amount of water that can be pumped from a particular water well. More specifically, a well test will allow prediction of the maximum rate at which water can be pumped from a well, and the distance that the water level in the well will fall for a given pumping rate and duration of pumping.

A flow net is a graphical representation of two-dimensional steady-state groundwater flow through aquifers.

Hydraulic conductivity, symbolically represented as , is a property of vascular plants, soils and rocks, that describes the ease with which a fluid can move through pore spaces or fractures. It depends on the intrinsic permeability of the material, the degree of saturation, and on the density and viscosity of the fluid. Saturated hydraulic conductivity, Ksat, describes water movement through saturated media. By definition, hydraulic conductivity is the ratio of volume flux to hydraulic gradient yielding a quantitative measure of a saturated soil's ability to transmit water when subjected to a hydraulic gradient.

In water-related science and engineering, there are two similar but distinct definitions in use for the word drawdown:

In the field of hydrogeology, storage properties are physical properties that characterize the capacity of an aquifer to release groundwater. These properties are storativity (S), specific storage (Ss) and specific yield (Sy). According to Groundwater, by Freeze and Cherry (1979), specific storage, [m-1], of a saturated aquifer is defined as the volume of water that a unit volume of the aquifer releases from storage under a unit decline in hydraulic head.

Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid. The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields.

A slug test is a particular type of aquifer test where water is quickly added or removed from a groundwater well, and the change in hydraulic head is monitored through time, to determine the near-well aquifer characteristics. It is a method used by hydrogeologists and civil engineers to determine the transmissivity/hydraulic conductivity and storativity of the material the well is completed in.

Overdrafting is the process of extracting groundwater beyond the equilibrium yield of the aquifer. Groundwater is the fresh water that can be found underground; it is also one of the largest sources. Groundwater depletion can be comparable to "money in a bank", The primary cause of groundwater depletion is pumping or the excessive pulling up of groundwater from underground aquifers.

Groundwater discharge is the volumetric flow rate of groundwater through an aquifer.

Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

Well drainage means drainage of agricultural lands by wells. Agricultural land is drained by pumped wells to improve the soils by controlling water table levels and soil salinity.

SahysMod

SahysMod is a computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge in irrigated agricultural lands, using different hydrogeologic and aquifer conditions, varying water management options, including the use of ground water for irrigation, and several crop rotation schedules, whereby the spatial variations are accounted for through a network of polygons.

ZOOMQ3D is a numerical finite-difference model, which simulates groundwater flow in aquifers. The program is used by hydrogeologists to investigate groundwater resources and to make predictions about possible future changes in their quantity and quality. The code is written in C++, an object-oriented programming language and can compile and run on Windows and Unix operating systems.

Hydrological model

A hydrologic model is a simplification of a real-world system that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models.

Drainage equation

A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and hydraulic conductivity of the soils. It is used in drainage design.

References

  1. Theis, Charles V. (1935). "The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage". Transactions, American Geophysical Union. 16 (2): 519–524. doi:10.1029/TR016i002p00519. hdl: 2027/uc1.31210024994400 .
  2. Thiem, Günther (1906). "Hydrologische methoden" (in German). Leipzig: J. M. Gebhardt: 56.{{cite journal}}: Cite journal requires |journal= (help)

Further reading

The US Geological Survey has some very useful free references on pumping test interpretation:

Some commercial printed references on aquifer test interpretation:

More book titles can be found in the further reading section of the hydrogeology article, most of which contain some material on aquifer test analysis or the theory behind these test methods.

Analysis software

See also