Raceway pond

Last updated
Raceway pond used for the cultivation of microalgae. The water is kept in constant motion with a powered paddle wheel. Microalgenkwekerij te Heure bij Borculo.jpg
Raceway pond used for the cultivation of microalgae. The water is kept in constant motion with a powered paddle wheel.

A raceway pond is a shallow artificial pond used in the cultivation of algae. [1] [2]

The pond is divided into a rectangular grid, with each rectangle containing one channel in the shape of an oval, like an automotive raceway circuit. From above, many ponds look like a maze. Each rectangle contains a paddle wheel to make the water flow continuously around the circuit.

The Department of Energy's Aquatic Species Program experimented with raceway ponds for the cultivation of algae. [1] Many commercial producers of spirulina still use raceway ponds as their primary method of cultivation. Raceway ponds were used for removal of lead from waste water using biosorption by Spirulina (Arthospira) sp . [3]

See also

Related Research Articles

<span class="mw-page-title-main">Algae</span> Diverse group of photosynthetic eukaryotic organisms

Algae is an informal term for a large and diverse group of photosynthetic, eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular microalgae, such as Chlorella, Prototheca and the diatoms, to multicellular forms, such as the giant kelp, a large brown alga which may grow up to 50 metres (160 ft) in length. Most are aquatic and lack many of the distinct cell and tissue types, such as stomata, xylem and phloem that are found in land plants. The largest and most complex marine algae are called seaweeds, while the most complex freshwater forms are the Charophyta, a division of green algae which includes, for example, Spirogyra and stoneworts. Algae that are carried by water are plankton, specifically phytoplankton.

<span class="mw-page-title-main">Aquaculture</span> Farming of aquatic organisms

Aquaculture, also known as aquafarming, is the controlled cultivation ("farming") of aquatic organisms such as fish, crustaceans, mollusks, algae and other organisms of value such as aquatic plants. Aquaculture involves cultivating freshwater, brackish water and saltwater populations under controlled or semi-natural conditions, and can be contrasted with commercial fishing, which is the harvesting of wild fish. Mariculture, commonly known as marine farming, is aquaculture in seawater habitats and lagoons, as opposed to freshwater aquaculture. Pisciculture is a type of aquaculture that consists of fish farming to obtain fish products as food.

<span class="mw-page-title-main">Mariculture</span> Cultivation of marine organisms in the open ocean

Mariculture or marine farming is a specialized branch of aquaculture involving the cultivation of marine organisms for food and other animal products, in enclosed sections of the open ocean, fish farms built on littoral waters, or in artificial tanks, ponds or raceways which are filled with seawater. An example of the latter is the farming of marine fish, including finfish and shellfish like prawns, or oysters and seaweed in saltwater ponds. Non-food products produced by mariculture include: fish meal, nutrient agar, jewellery, and cosmetics.

<span class="mw-page-title-main">Eutrophication</span> Excessive plant growth in response to excess nutrient availability

Eutrophication is the "explosive growth of microorganisms, to the extent that dissolved oxygen is depleted". Other definitions emphasize the role of excessive nutrient supply: "excessive plant growth resulting from nutrient enrichment". and phosphorus. It has also been defined as "nutrient-induced increase in phytoplankton productivity".

<span class="mw-page-title-main">Spirulina (dietary supplement)</span> Blue-green algal genus (cyanobacteria) used in food

Spirulina is a biomass of cyanobacteria that can be consumed by humans and animals. The three species are Arthrospira platensis, A. fusiformis, and A. maxima.

<span class="mw-page-title-main">Microalgae</span> Microscopic algae

Microalgae or microphytes are microscopic algae invisible to the naked eye. They are phytoplankton typically found in freshwater and marine systems, living in both the water column and sediment. They are unicellular species which exist individually, or in chains or groups. Depending on the species, their sizes can range from a few micrometers (μm) to a few hundred micrometers. Unlike higher plants, microalgae do not have roots, stems, or leaves. They are specially adapted to an environment dominated by viscous forces.

<span class="mw-page-title-main">Algaculture</span> Aquaculture involving the farming of algae

Algaculture is a form of aquaculture involving the farming of species of algae.

<span class="mw-page-title-main">Photobioreactor</span> Bioreactor with a light source to grow photosynthetic microorganisms

A photobioreactor (PBR) refers to any cultivation system designed for growing photoautotrophic organisms using artificial light sources or solar light to facilitate photosynthesis. PBRs are typically used to cultivate microalgae, cyanobacteria, and some mosses. PBRs can be open systems, such as raceway ponds, which rely upon natural sources of light and carbon dioxide. Closed PBRs are flexible systems that can be controlled to the physiological requirements of the cultured organism, resulting in optimal growth rates and purity levels. PBRs are typically used for the cultivation of bioactive compounds for biofuels, pharmaceuticals, and other industrial uses.

<span class="mw-page-title-main">Algae fuel</span> Use of algae as a source of energy-rich oils

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.

<span class="mw-page-title-main">Trophic state index</span> Measure of the ability of water to sustain biological productivity

The Trophic State Index (TSI) is a classification system designed to rate water bodies based on the amount of biological productivity they sustain. Although the term "trophic index" is commonly applied to lakes, any surface water body may be indexed.

<i>Gelidium</i> Genus of algae

Gelidium is a genus of thalloid red algae comprising 134 species. Its members are known by a number of common names.

<span class="mw-page-title-main">Raceway (aquaculture)</span> Artificial channel used in aquaculture

A raceway, also known as a flow-through system, is an artificial channel used in aquaculture to culture aquatic organisms. Raceway systems are among the earliest methods used for inland aquaculture. A raceway usually consists of rectangular basins or canals constructed of concrete and equipped with an inlet and outlet. A continuous water flow-through is maintained to provide the required level of water quality, which allows animals to be cultured at higher densities within the raceway.

<span class="mw-page-title-main">Edible seaweed</span> Algae that can be eaten and used for culinary purposes

Edible seaweed, or sea vegetables, are seaweeds that can be eaten and used for culinary purposes. They typically contain high amounts of fiber. They may belong to one of several groups of multicellular algae: the red algae, green algae, and brown algae. Seaweeds are also harvested or cultivated for the extraction of polysaccharides such as alginate, agar and carrageenan, gelatinous substances collectively known as hydrocolloids or phycocolloids. Hydrocolloids have attained commercial significance, especially in food production as food additives. The food industry exploits the gelling, water-retention, emulsifying and other physical properties of these hydrocolloids.

<span class="mw-page-title-main">Algae bioreactor</span> Device used for cultivating micro or macro algae

An algae bioreactor is used for cultivating micro or macroalgae. Algae may be cultivated for the purposes of biomass production (as in a seaweed cultivator), wastewater treatment, CO2 fixation, or aquarium/pond filtration in the form of an algae scrubber. Algae bioreactors vary widely in design, falling broadly into two categories: open reactors and enclosed reactors. Open reactors are exposed to the atmosphere while enclosed reactors, also commonly called photobioreactors, are isolated to varying extents from the atmosphere. Specifically, algae bioreactors can be used to produce fuels such as biodiesel and bioethanol, to generate animal feed, or to reduce pollutants such as NOx and CO2 in flue gases of power plants. Fundamentally, this kind of bioreactor is based on the photosynthetic reaction, which is performed by the chlorophyll-containing algae itself using dissolved carbon dioxide and sunlight. The carbon dioxide is dispersed into the reactor fluid to make it accessible to the algae. The bioreactor has to be made out of transparent material.

<i>Arthrospira</i> Genus of Cyanobacteria

Arthrospira is a genus of free-floating filamentous cyanobacteria characterized by cylindrical, multicellular trichomes in an open left-hand helix. A dietary supplement is made from A. platensis and A. maxima, known as spirulina. The A. maxima and A. platensis species were once classified in the genus Spirulina. Although the introduction of the two separate genera Arthrospira and Spirulina is now generally accepted, there has been much dispute in the past and the resulting taxonomical confusion is tremendous.

<span class="mw-page-title-main">Seaweed farming</span> Farming of aquatic seaweed

Seaweed farming or kelp farming is the practice of cultivating and harvesting seaweed. In its simplest form farmers gather from natural beds, while at the other extreme farmers fully control the crop's life cycle.

<i>Nannochloropsis</i> and biofuels

Nannochloropsis is a genus of alga within the heterokont line of eukaryotes, that is being investigated for biofuel production. One marine Nannochloropsis species has been shown to be suitable for algal biofuel production due to its ease of growth and high oil content, mainly unsaturated fatty acids and a significant percentage of palmitic acid. It also contains enough unsaturated fatty acid linolenic acid and polyunsaturated acid for a quality biodiesel.

<span class="mw-page-title-main">Culture of microalgae in hatcheries</span>

Microalgae or microscopic algae grow in either marine or freshwater systems. They are primary producers in the oceans that convert water and carbon dioxide to biomass and oxygen in the presence of sunlight.

<span class="mw-page-title-main">Aquaculture of giant kelp</span> Cultivation of seaweed

Aquaculture of giant kelp, Macrocystis pyrifera, is the cultivation of kelp for uses such as food, dietary supplements or potash. Giant kelp contains iodine, potassium, other minerals vitamins and carbohydrates.

Seaweed fertiliser is organic fertilizer made from seaweed that is used in agriculture to increase soil fertility and plant growth. The use of seaweed fertilizer dates back to antiquity and has a broad array of benefits for soils. Seaweed fertilizer can be applied in a number of different forms, including refined liquid extracts and dried, pulverized organic material. Through its composition of various bioactive molecules, seaweed functions as a strong soil conditioner, bio-remediator, and biological pest control, with each seaweed phylum offering various benefits to soil and crop health. These benefits can include increased tolerance to abiotic stressors, improved soil texture and water retention, and reduced occurrence of diseases.

References

  1. 1 2 Khawam, George; Waller, Peter; Gao, Song; Edmundson, Scott J.; Wigmosta, Mark S.; Ogden, Kimberly (May 2019). "Model of temperature, evaporation, and productivity in elevated experimental algae raceways and comparison with commercial raceways". Algal Research. 39: 101448. doi: 10.1016/j.algal.2019.101448 . ISSN   2211-9264. OSTI   1581776. S2CID   92558441.
  2. Huesemann, M.; Chavis, A.; Edmundson, Scott J; Rye, D.; Hobbs, S.; Sun, N.; Wigmosta, M. (2017-09-13). "Climate-simulated raceway pond culturing: quantifying the maximum achievable annual biomass productivity of Chlorella sorokiniana in the contiguous USA". Journal of Applied Phycology. 30 (1): 287–298. doi:10.1007/s10811-017-1256-6. ISSN   0921-8971. S2CID   254606572.
  3. Siva Kiran RR, Madhu GM*, Satyanarayana SV, Kalpana P, Bindiya P, Subba Rangaiah G. "Equilibrium and kinetic studies of lead biosorption by three Spirulina (Arthrospira) species in open raceway ponds." Journal of Biochemical Technology Vol. 6, no. 1 (2015): 894-909.