Aquaculture of brine shrimp

Last updated
San Francisco Bay Salt Ponds Artemia breeding ponds.jpg
San Francisco Bay Salt Ponds

Brine shrimp have the ability to produce dormant eggs, known as cysts. This has led to the extensive use of brine shrimp in aquaculture. The cysts may be stored for long periods and hatched on demand to provide a convenient form of live feed for larval fish and crustaceans. [1]

Contents

From cysts, brine shrimp nauplii can readily be used to feed to fish and crustacean larvae just after one-day incubation. Instar I (the nauplii that just hatched and with large yolk reserves in their body) and instar II nauplii (the nauplii after first moult and with functional digestive tracts) are more widely used in aquaculture, for the reasons they are easy for operation, nutrients rich, and of small size which makes them suitable for feeding fish and crustacean larvae live or after drying.

Diet

Brine shrimp cyst Brine shrimp cyst.jpg
Brine shrimp cyst

In their first stage of development, brine shrimp nauplii do not feed but consume their own energy reserves stored in the cyst. [2] Wild brine shrimp eat microscopic planktonic algae. Cultured brine shrimp can also be fed particulate foods including yeast, wheat flour, soybean powder or egg yolk. [3]

Reproduction

Adult female brine shrimp ovulate approximately every 140 hours. In favourable conditions, the female brine shrimp can produce eggs that almost immediately hatch. While in extreme conditions, such as low oxygen level or salinity above 150‰, female brine shrimp produce eggs with a chorion coating which has a brown colour. These eggs, also known as cysts, are metabolically inactive and can remain in total stasis for two years while in dry oxygen-free conditions, even at temperatures below freezing. This characteristic is called cryptobiosis, meaning "hidden life". While in cryptobiosis, brine shrimp eggs can survive temperatures of liquid air (−190 °C or −310.0 °F) and a small percentage can survive above boiling temperature (105 °C or 221 °F) for up to two hours. [4] [5] Once placed in briny (salt) water (>5‰), the eggs hatch within a few hours. The nauplii, or larvae, are less than 0.4 mm in length when they first hatch. Brine shrimp have a biological life cycle of 3-4 months[ citation needed ]

Nutritional benefits

Since no artificial feed formulation is yet available to completely substitute for brine shrimp, feeding live prey to young fish and crustacean larvae still remains essential in commercial hatchery operation. The nutritional properties of newly hatched brine shrimp are high in lipids and unsaturated fatty acids . [6] Dried brine shrimp nauplii contain 37%–71% protein, 12%–30% lipid, 11%–23% carbohydrate, and 4%–21% ash. [7]

The fatty acid compositions of the nauplii are highly environmentally determined. Also the nutritional quality of commercially available brine shrimp strains being relatively poor in eicosapentaenoic acid (EPA, 20:5n-3), and especially docosahexaenoic acid (DHA, 22:6n-3). Since these components are critical for the larvae development, it is common practice to feed this live prey with emulsions of marine oils that are rich in the EPA and DHA, which is referred as enrichment processes. [1]

Industrial hatchery

Since the development of commercial marine fish culture in the late 1970s, the demand for brine shrimp cysts has gradually increased from a few tonnes to approximately 800 tonnes per annum, representing approximately 40% of the total aquaculture demand for feeds for early stages. The price of the cysts varies during the last a few decades depending on both demand and the quality of the cysts. [2] During the last 25 years, the Great Salt Lake in the United States has been the major supplier of brine shrimp cysts to the world aquaculture industry and the subject of numerous speculations regarding its capacity to sustain a growing aquaculture industry. [8] However, due to the unpredictable fluctuation of the cyst yield from Great Salt Lake, there are other sites for cyst production, such as Lake Urmia in Iran, Aibi Lake in China, Bolshoye Yarovoye in Siberia, Kara Bogaz Gol in Turkmenistan, and several lakes in Kazakhstan. [8]

Although hatchery processes of brine shrimp are relative simple and easy to operate, a series of factors need to be controlled and monitored to make optimal use of the cysts. The critical factors are light, temperature, salinity, oxygen level, pH and cyst density, which vary between different brine shrimp strains. [9] Hatching quality can be described by hatching efficiency (number of nauplii per gram of cysts), hatching percentage or hatching synchrony (time between first and last hatching cysts).[ citation needed ]

There are six stages in the hatching and development of brine shrimp industrial hatchery. [1]

After hatching, and prior to feeding them to the fish or crustacean larvae, brine shrimp nauplii should be separated from the hatching wastes. After switching off the aeration in the hatching tank, cyst shells will float and nauplii will concentrate at the bottom of the tank. The nauplii are further concentrated in a concentrator rinse and separated from the cysts. The enrichment process, if needed, generally occurs after the nauplii develop a digestive tract. [1]

Notes

  1. 1 2 3 4 Martin Daintith (1996). Rotifers and Artemia for Marine Aquaculture: a Training Guide. University of Tasmania. OCLC   222006176.
  2. 1 2 P. Sorgeloos; P. Dhert; P. Candreva (2001). "Use of the brine shrimp, Artemia spp., in marine fish larviculture" (PDF). Aquaculture . 200 (1–2): 147–159. doi:10.1016/s0044-8486(01)00698-6. Archived (PDF) from the original on 2016-12-07. Retrieved 2011-10-01.
  3. Kai Schumann (August 10, 1997). "Artemia (Brine Shrimp) FAQ 1.1". Portland State University. Archived from the original on August 14, 2007. Retrieved March 13, 2010.
  4. Whitey Hitchcock. "Brine shrimp". Clinton High School Science. Archived from the original on September 3, 2010. Retrieved March 13, 2010.
  5. Brine Shrimp Eggs, 30 July 2023
  6. P. Léger; D. A. Bengtson; K. L. Simpson; P. Sorgeloos (1986). "The use and nutritional value of Artemia as a food source". Oceanography and Marine Biology: An Annual Review. 24: 521–623.
  7. D. A. Bengtson; P. Léger; P. Sorgeloos (1991). "Use of Artemia as a food source for aquaculture". In R. A. Browne; P. Sorgeloos; C. N. A. Trotman (eds.). Artemia Biology. Boca Raton, Florida: CRC Press. pp. 255–285. ISBN   978-0-8493-6729-8.
  8. 1 2 P. Lavens; P. Sorgeloos (2000). "The history, present stats and prospects of the availability of Artemia cysts for aquaculture". Aquaculture . 181 (3–4): 397–403. doi:10.1016/s0044-8486(99)00233-1.
  9. Paul Vanhaecke; Patrick Sorgeloos (1983). "International study on Artemia XIX. Hatching data for ten commercial sources of brine shrimp cysts and re-evaluation of the 'hatching efficiency' concept". Aquaculture . 30 (1–4): 43–52. doi:10.1016/0044-8486(83)90150-3.

Related Research Articles

<span class="mw-page-title-main">Milkfish</span> Species of fish

The milkfish is the sole living species in the family Chanidae. However, there are at least five extinct genera from the Cretaceous. The repeating scientific name (tautonym) is from Greek khanos.

Sea-Monkeys is a marketing term for brine shrimp (Artemia) sold as novelty aquarium pets. Developed in the United States in 1957 by Harold von Braunhut, they are sold as eggs intended to be added to water, and almost always come bundled in a kit of three pouches and instructions. Sometimes a small tank and additional pouches are included. The product was heavily marketed in the 1960s and 70s, especially in comic books, and remains a presence in popular culture.

<span class="mw-page-title-main">Brine shrimp</span> Genus of aquatic crustaceans

Artemia is a genus of aquatic crustaceans also known as brine shrimp. It is the only genus in the family Artemiidae. The first historical record of the existence of Artemia dates back to the first half of the 10th century AD from Lake Urmia, Iran, with an example called by an Iranian geographer an "aquatic dog", although the first unambiguous record is the report and drawings made by Schlösser in 1757 of animals from Lymington, England. Artemia populations are found worldwide, typically in inland saltwater lakes, but occasionally in oceans. Artemia are able to avoid cohabiting with most types of predators, such as fish, by their ability to live in waters of very high salinity.

<span class="mw-page-title-main">Mysida</span> Small, shrimp-like crustacean

Mysida is an order of small, shrimp-like crustaceans in the malacostracan superorder Peracarida. Their common name opossum shrimps stems from the presence of a brood pouch or "marsupium" in females. The fact that the larvae are reared in this pouch and are not free-swimming characterises the order. The mysid's head bears a pair of stalked eyes and two pairs of antennae. The thorax consists of eight segments each bearing branching limbs, the whole concealed beneath a protective carapace and the abdomen has six segments and usually further small limbs.

<span class="mw-page-title-main">Indian prawn</span> Species of crustacean

The Indian prawn, is one of the major commercial prawn species of the world. It is found in the Indo-West Pacific from eastern and south-eastern Africa, through India, Malaysia and Indonesia to southern China and northern Australia. Adult shrimp grow to a length of about 22 cm (9 in) and live on the seabed to depths of about 90 m (300 ft). The early developmental stages take place in the sea before the larvae move into estuaries. They return to the sea as sub-adults.

<span class="mw-page-title-main">Hatchery</span>

A hatchery is a facility where eggs are hatched under artificial conditions, especially those of fish, poultry or even turtles. It may be used for ex-situ conservation purposes, i.e. to breed rare or endangered species under controlled conditions; alternatively, it may be for economic reasons.

<span class="mw-page-title-main">Anostraca</span> Order of crustaceans

Anostraca is one of the four orders of crustaceans in the class Branchiopoda; its members are referred to as fairy shrimp. They live in vernal pools and hypersaline lakes across the world, and they have even been found in deserts, ice-covered mountain lakes and Antarctic ice. They are usually 6–25 mm (0.24–0.98 in) long. Most species have 20 body segments, bearing 11 pairs of leaf-like phyllopodia, and the body lacks a carapace. They swim "upside-down" and feed by filtering organic particles from the water or by scraping algae from surfaces, with the exception of Branchinecta gigas, or "giant fairy shrimp", which is itself a predator of other species of anostracans. They are an important food for many birds and fish, and some are cultured and harvested for use as fish food. There are 300 species spread across 8 families.

<i>Lysmata amboinensis</i> Species of crustacean also known as a cleaner shrimp

Lysmata amboinensis is an omnivorous shrimp species known by several common names including the Pacific cleaner shrimp. It is considered a cleaner shrimp as eating parasites and dead tissue from fish makes up a large part of its diet. The species is a natural part of the coral reef ecosystem and is widespread across the tropics typically living at depths of 5–40 metres (16–131 ft).

<span class="mw-page-title-main">Aquarium fish feed</span> Plant or animal material intended for consumption by pet fish

Aquarium fish feed is plant or animal material intended for consumption by pet fish kept in aquariums or ponds. Fish foods normally contain macronutrients, trace elements and vitamins necessary to keep captive fish in good health. Approximately 80% of fishkeeping hobbyists feed their fish exclusively prepared foods that most commonly are produced in flake, pellet or tablet form. Pelleted forms, some of which sink rapidly, are often used for larger fish or bottom feeding species such as loaches or catfish. Some fish foods also contain additives such as sex hormones or beta carotene to artificially enhance the color of ornamental fish.

<span class="mw-page-title-main">Fish hatchery</span> Aquaculture facility

A fish hatchery is a place for artificial breeding, hatching, and rearing through the early life stages of animals—finfish and shellfish in particular. Hatcheries produce larval and juvenile fish, shellfish, and crustaceans, primarily to support the aquaculture industry where they are transferred to on-growing systems, such as fish farms, to reach harvest size. Some species that are commonly raised in hatcheries include Pacific oysters, shrimp, Indian prawns, salmon, tilapia and scallops.

<span class="mw-page-title-main">Pygmy corydoras</span> Species of fish

Corydoras pygmaeus, or the pygmy corydoras or pygmy catfish is a tropical and freshwater fish belonging to the subfamily Corydoradinae of the family Callichthyidae. It originates in tropical inland waters in South America, and is found in the Madeira River basin in Brazil.

<span class="mw-page-title-main">Microbial cyst</span> Resting or dormant stage of a microorganism

A microbial cyst is a resting or dormant stage of a microorganism, usually a bacterium or a protist or rarely an invertebrate animal, that helps the organism to survive in unfavorable environmental conditions. It can be thought of as a state of suspended animation in which the metabolic processes of the cell are slowed and the cell ceases all activities like feeding and locomotion. Encystment, the formation of the cyst, also helps the microbe to disperse easily, from one host to another or to a more favorable environment. When the encysted microbe reaches an environment favorable to its growth and survival, the cyst wall breaks down by a process known as excystation. In excystment, the exact stimulus is unknown for most protists.

<i>Pseudoplatystoma fasciatum</i> Species of fish

Pseudoplatystoma fasciatum or barred sorubim or barred catfish is a species of long-whiskered catfish native to the Suriname, Corantijn and Essequibo. The nocturnal predator feeds mainly on other fish and crabs. Females reach a more notable size. They become sexually mature at 56 cm (22 in), males at 45 cm (18 in) and this species reaches a maximum length of 90 cm (35 in) TL. Fecundity seems to be estimated at 8 million eggs per kg, but was recently measured in aquaculture at a lower, and more likely number of 150,000 eggs laid per kg.

<i>Artemia salina</i> Species of small brine shrimp

Artemia salina is a species of brine shrimp – aquatic crustaceans that are more closely related to Triops and cladocerans than to true shrimp. It belongs to a lineage that does not appear to have changed much in 100 million years.

<span class="mw-page-title-main">Crustacean larva</span> Crustacean larval and immature stages between hatching and adult form

Crustaceans may pass through a number of larval and immature stages between hatching from their eggs and reaching their adult form. Each of the stages is separated by a moult, in which the hard exoskeleton is shed to allow the animal to grow. The larvae of crustaceans often bear little resemblance to the adult, and there are still cases where it is not known what larvae will grow into what adults. This is especially true of crustaceans which live as benthic adults, more-so than where the larvae are planktonic, and thereby easily caught.

<span class="mw-page-title-main">Commercial fish feed</span> Fish food manufactured commercially.

Manufactured feeds are an important part of modern commercial aquaculture, providing the balanced nutrition needed by farmed fish. The feeds, in the form of granules or pellets, provide the nutrition in a stable and concentrated form, enabling the fish to feed efficiently and grow to their full potential.

<span class="mw-page-title-main">Octopus aquaculture</span>

Octopus aquaculture describes the captive-raising of octopuses and commercial sale of their meat. A complex and labor-intensive form of farming, octopus aquaculture is being driven by strong market demand in the Mediterranean and in South American and Asian countries. Annual global demand for octopus more than doubled from 1980 to 2019, from roughly 180,000 to about 370,000 tons. The supply of octopus has been constrained by overfishing in many key fisheries and proponents of farming suggest human-induced culturing could help restock natural populations. Opponents of the nascent industry argue that cephalopod intelligence and emotional capacity, as well as the solitary and carnivorous character of octopuses, make them particularly ill-suited to intensive, captive breeding. Commercial sale may stimulate market demand, hastening rather than offsetting the decline in wild stocks. An announcement that a Spanish firm would begin octopus aquaculture as early as 2022 prompted ethical and scientific controversy.

<span class="mw-page-title-main">Aquaculture of cobia</span>

Cobia, a warm water fish, is one of the more suitable candidates for offshore aquaculture. Cobia are large pelagic fish, up to 2 metres (6.6 ft) long and 68 kilograms (150 lb) in weight. They are solitary fish except when spawning, found in warm-temperate to tropical waters.

<i>Galaxea fascicularis</i> Species of coral

Galaxea fascicularis is a species of colonial stony coral in the family Euphylliidae, commonly known as octopus coral, fluorescence grass coral, galaxy coral among various vernacular names.

<i>Tigriopus brevicornis</i> Coastal marine copepod from north western Europe

Tigriopus brevicornis is a coastal marine copepod. They are a dominant member of shallow supra tidal rock pools along the North Western European coastline. A broad range of studies have been carried out on this species, including: its ecology, physiology, phylogeography, metapopulation genetics, development and reproductive behaviour. T. brevicornis has also recently been used in ecotoxicology studies and has been trialled as a live feed for larvae in several aquaculture-based studies for the past 30 years.