Fish preservation

Last updated
An ancient basin for fish preservation in Tyritake, Crimea Rybozasolochnye vanny na Tiritake.jpg
An ancient basin for fish preservation in Tyritake, Crimea
A fish-drying rack in Norway Hjell-oversikt.arj.jpeg
A fish-drying rack in Norway

Fish preservation is the method of increasing the shelf life of fish and other fish products by applying the principles of different branches of science in order to keep the fish, after it has landed, in a condition wholesome and fit for human consumption. [1] [2] Ancient methods of preserving fish included drying, salting, pickling and smoking. All of these techniques are still used today but the more modern techniques of freezing and canning have taken on a large importance.

Contents

Fish curing includes and of curing fish by drying, salting, smoking, and pickling, or by combinations of these processes have been employed since ancient times. On sailing vessels fish were usually salted down immediately to prevent spoilage; the swifter boats of today commonly bring in unsalted fish. Modern freezing and canning methods have largely supplanted older methods of preservation. Fish to be cured are usually first cleaned, scaled, and eviscerated. Fish are salted by packing them between layers of salt or by immersion in brine. The fish most extensively salted are cod, herring, mackerel, and haddock. Smoking preserves fish by drying, by deposition of creosote ingredients, and, when the fish are near the source of heat, by heat penetration. Herring and haddock (finnan haddie) are commonly smoked. Kippers are split herring, and bloaters are whole herring, salted and smoked. Sardines, pilchards, and anchovies are small fish of the herring family, often salted and smoked and then preserved in oil. Fish are dried under controlled conditions of temperature, humidity, and air velocity. Since the dried product is relatively unappetizing and rehydrating slow, other preservation methods are common.

History

Socio-economic value of fish preservation

Preservation of marine products is of great importance to the coastal poor. Preserved fish products endure adequate protein during low fishing periods. Subsistence fishers use their abundant catch of small fish to make fermented fish paste and smoked fish with the assistance of family members. Large fish are used to make fermented fish or salt dried fish. Other important processing activities include drying of small shrimp, squid, ray and shark and preparation of shrimp paste. [3]

In the past, fishing vessels were restricted in range by the simple consideration that the catch must be returned to port before it spoils and becomes worthless. The development of refrigeration and freezing technologies transformed the commercial fishing industry: fishing vessels could be larger, spending more time away from port and therefore accessing fish stocks at a much greater distance. Refrigeration and freezing also allow the catch to be distributed to markets further inland, reaching customers who previously would have had access only to dried or salted sea fish.

Canning, developed during the 19th century, has also had a significant impact on fishing by allowing seasonal catches of fish that are possibly far from large centres of population to be exploited. For example: canned sardines.

Preservation techniques are needed to prevent fish spoilage and lengthen shelf life. They are designed to inhibit the activity of spoilage bacteria and the metabolic changes that result in the loss of fish quality. Spoilage bacteria are the specific bacteria that produce the unpleasant odours and flavours associated with spoiled fish. Fish normally host many bacteria that are not spoilage bacteria, and most of the bacteria present on spoiled fish played no role in the spoilage. [4] To flourish, bacteria need the right temperature, sufficient water and oxygen, and surroundings that are not too acidic. Preservation techniques work by interrupting one or more of these needs. Preservation techniques can be classified as follows. [5]

Control of temperature

Ice preserves fish and extends shelf life by lowering the temperature Kingfish great south bay.jpg
Ice preserves fish and extends shelf life by lowering the temperature

If the temperature is decreased, the metabolic activity in the fish from microbial or autolytic processes can be reduced or stopped. This is achieved by refrigeration where the temperature is dropped to about 0 °C, or freezing where the temperature is dropped below -18 °C. On fishing vessels, the fish are refrigerated mechanically by circulating cold air or by packing the fish in boxes with ice. Forage fish, which are often caught in large numbers, are usually chilled with refrigerated or chilled seawater. Once chilled or frozen, the fish need further cooling to maintain the low temperature. There are key issues with fish cold store design and management, such as how large and energy efficient they are, and the way they are insulated and palletized. [5]

An effective method of preserving the freshness of fish is to chill with ice by distributing ice uniformly around the fish. It is a safe cooling method that keeps the fish moist and in an easily stored form suitable for transport. It has become widely used since the development of mechanical refrigeration, which makes ice easy and cheap to produce. Ice is produced in various shapes; crushed ice and ice flakes, plates, tubes and blocks are commonly used to cool fish. [6] Particularly effective is slurry ice, made from microcrystals of ice formed and suspended within a solution of water and a freezing point depressant, such as common salt. [7]

A more recent development is pumpable ice technology. Pumpable ice flows like water, and because it is homogeneous, it cools fish faster than freshwater solid ice methods and eliminates freeze burns. It complies with HACCP and ISO food safety and public health standards, and uses less energy than conventional freshwater solid ice technologies. [8] [9]

Control of water activity

The water activity, aw, in a fish is defined as the ratio of the water vapour pressure in the flesh of the fish to the vapour pressure of pure water at the same temperature and pressure. It ranges between 0 and 1, and is a parameter that measures how available the water is in the flesh of the fish. Available water is necessary for the microbial and enzymatic reactions involved in spoilage. There are a number of techniques that have been or are used to tie up the available water or remove it by reducing the aw. Traditionally, techniques such as drying, salting and smoking have been used, and have been used for thousands of years. These techniques can be very simple, for example, by using solar drying. In more recent times, freeze-drying, water-binding humectants, and fully automated equipment with temperature and humidity control have been added. Often a combination of these techniques is used. [5]

Physical control of microbial loads

Heat or ionizing irradiation can be used to kill the bacteria that cause decomposition. Heat is applied by cooking, blanching or microwave heating in a manner that pasteurizes or sterilizes fish products. Cooking or pasteurizing does not completely inactivate microorganisms and may need to be followed with refrigeration to preserve fish products and increase their shelf life. Sterilised products are stable at ambient temperatures up to 40 °C, but to ensure they remain sterilized they need packaging in metal cans or retortable pouches before the heat treatment. [5]

Chemical control of microbial loads

Microbial growth and proliferation can be inhibited by a technique called biopreservation. [10] Biopreservation is achieved by adding antimicrobials or by increasing the acidity of the fish muscle. Most bacteria stop multiplying when the pH is less than 4.5. Acidity is increased by fermentation, marination or by directly adding acids (acetic, citric, lactic) to fish products. Lactic acid bacteria produce the antimicrobial nisin which further enhances preservation. Other preservatives include nitrites, sulphites, sorbates, benzoates and essential oils. [5]

Control of the oxygen reduction potential

Spoilage bacteria and lipid oxidation usually need oxygen, so reducing the oxygen around fish can increase shelf life. This is done by controlling or modifying the atmosphere around the fish, or by vacuum packaging. Controlled or modified atmospheres have specific combinations of oxygen, carbon dioxide and nitrogen, and the method is often combined with refrigeration for more effective fish preservation. [5]

Combined techniques

Two or more of these techniques are often combined. This can improve preservation and reduce unwanted side effects such as the denaturation of nutrients by severe heat treatments. Common combinations are salting/drying, salting/marinating, salting/smoking, drying/smoking, pasteurization/refrigeration and controlled atmosphere/refrigeration. [5] Other process combinations are currently being developed along the multiple hurdle theory. [11]

See:

See also

Related Research Articles

<span class="mw-page-title-main">Food preservation</span> Inhibition of microbial growth in food

Food preservation includes processes that make food more resistant to microorganism growth and slow the oxidation of fats. This slows down the decomposition and rancidification process. Food preservation may also include processes that inhibit visual deterioration, such as the enzymatic browning reaction in apples after they are cut during food preparation. By preserving food, food waste can be reduced, which is an important way to decrease production costs and increase the efficiency of food systems, improve food security and nutrition and contribute towards environmental sustainability. For instance, it can reduce the environmental impact of food production.

<span class="mw-page-title-main">Salting (food)</span> Preservation of food using salt

Salting is the preservation of food with dry edible salt. It is related to pickling in general and more specifically to brining also known as fermenting and is one form of curing. It is one of the oldest methods of preserving food, and two historically significant salt-cured foods are salted fish and salt-cured meat. Vegetables such as runner beans and cabbage are also often preserved in this manner.

<span class="mw-page-title-main">Food drying</span> Method of food preservation

Food drying is a method of food preservation in which food is dried. Drying inhibits the growth of bacteria, yeasts, and mold through the removal of water. Dehydration has been used widely for this purpose since ancient times; the earliest known practice is 12,000 B.C. by inhabitants of the modern Middle East and Asia regions. Water is traditionally removed through evaporation by using methods such as air drying, sun drying, smoking or wind drying, although today electric food dehydrators or freeze-drying can be used to speed the drying process and ensure more consistent results.

<span class="mw-page-title-main">Smoked salmon</span> Form of salmon preparation

Smoked salmon is a preparation of salmon, typically a fillet that has been cured and hot or cold smoked.

<span class="mw-page-title-main">Food storage</span> Type of storage that allows food to be eaten after time

Food storage is a way of decreasing the variability of the food supply in the face of natural, inevitable variability. It allows food to be eaten for some time after harvest rather than solely immediately. It is both a traditional domestic skill and, in the form of food logistics, an important industrial and commercial activity. Food preservation, storage, and transport, including timely delivery to consumers, are important to food security, especially for the majority of people throughout the world who rely on others to produce their food.

<span class="mw-page-title-main">Frozen food</span> Food stored at temperatures below the freezing point of water, for extending its shelf life

Freezing food preserves it from the time it is prepared to the time it is eaten. Since early times, farmers, fishermen, and trappers have preserved grains and produce in unheated buildings during the winter season. Freezing food slows decomposition by turning residual moisture into ice, inhibiting the growth of most bacterial species. In the food commodity industry, there are two processes: mechanical and cryogenic. The freezing kinetics is important to preserve the food quality and texture. Quicker freezing generates smaller ice crystals and maintains cellular structure. Cryogenic freezing is the quickest freezing technology available due to the ultra low liquid nitrogen temperature −196 °C (−320 °F).

<span class="mw-page-title-main">Freeze drying</span> Low temperature dehydration process

Freeze drying, also known as lyophilization or cryodesiccation, is a low temperature dehydration process that involves freezing the product and lowering pressure, removing the ice by sublimation. This is in contrast to dehydration by most conventional methods that evaporate water using heat.

<span class="mw-page-title-main">Fermented fish</span> Fish cured by fermentation to reduce spoilage

Fermented fish is a traditional preservation of fish. Before refrigeration, canning and other modern preservation techniques became available, fermenting was an important preservation method. Fish rapidly spoils, or goes rotten, unless some method is applied to stop the bacteria that produce the spoilage. Fermentation is a method which attacks the ability of microbials to spoil fish. It does this by making the fish muscle more acidic; bacteria usually cease multiplying when the pH drops below 4.5.

<span class="mw-page-title-main">Smoked fish</span> Fish that has been cured by smoking

Smoked fish is fish that has been cured by smoking. Foods have been smoked by humans throughout history. Originally this was done as a preservative. In more recent times fish is readily preserved by refrigeration and freezing and the smoking of fish is generally done for the unique taste and flavour imparted by the smoking process.

<span class="mw-page-title-main">Dried fish</span> Fish preserved by drying

Fresh fish rapidly deteriorates unless some way can be found to preserve it. Drying is a method of food preservation that works by removing water from the food, which inhibits the growth of microorganisms. Open air drying using sun and wind has been practiced since ancient times to preserve food. Water is usually removed by evaporation but, in the case of freeze-drying, food is first frozen and then the water is removed by sublimation. Bacteria, yeasts and molds need the water in the food to grow, and drying effectively prevents them from surviving in the food.

<span class="mw-page-title-main">Curing (food preservation)</span> Food preservation and flavouring processes based on drawing moisture out of the food by osmosis

Curing is any of various food preservation and flavoring processes of foods such as meat, fish and vegetables, by the addition of salt, with the aim of drawing moisture out of the food by the process of osmosis. Because curing increases the solute concentration in the food and hence decreases its water potential, the food becomes inhospitable for the microbe growth that causes food spoilage. Curing can be traced back to antiquity, and was the primary method of preserving meat and fish until the late 19th century. Dehydration was the earliest form of food curing. Many curing processes also involve smoking, spicing, cooking, or the addition of combinations of sugar, nitrate, and nitrite.

<span class="mw-page-title-main">Fish processing</span> Process from catching to selling fish

The term fish processing refers to the processes associated with fish and fish products between the time fish are caught or harvested, and the time the final product is delivered to the customer. Although the term refers specifically to fish, in practice it is extended to cover any aquatic organisms harvested for commercial purposes, whether caught in wild fisheries or harvested from aquaculture or fish farming.

<span class="mw-page-title-main">Cured fish</span> Fish subjected to fermentation, pickling or smoking

Cured fish is fish which has been cured by subjecting it to fermentation, pickling, smoking, or some combination of these before it is eaten. These food preservation processes can include adding salt, nitrates, nitrite or sugar, can involve smoking and flavoring the fish, and may include cooking it. The earliest form of curing fish was dehydration. Other methods, such as smoking fish or salt-curing also go back for thousands of years. The term "cure" is derived from the Latin curare, meaning to take care of. It was first recorded in reference to fish in 1743.

<span class="mw-page-title-main">Salted fish</span> Fish preserved or cured with salt

Salted fish, such as kippered herring or dried and salted cod, is fish cured with dry salt and thus preserved for later eating. Drying or salting, either with dry salt or with brine, was the only widely available method of preserving fish until the 19th century. Dried fish and salted fish are a staple of diets in the Caribbean, West Africa, North Africa, South Asia, Southeast Asia, Southern China, Scandinavia, parts of Canada including Newfoundland, coastal Russia, and in the Arctic. Like other salt-cured meats, it provides preserved animal protein even in the absence of refrigeration.

<span class="mw-page-title-main">Fish products</span> Food product produced from fish

Fish and fish products are consumed as food all over the world. With other seafoods, they provides the world's prime source of high-quality protein; 14–16 percent of the animal protein consumed worldwide. Over one billion people rely on fish as their primary source of animal protein.

<span class="mw-page-title-main">Biopreservation</span>

Biopreservation is the use of natural or controlled microbiota or antimicrobials as a way of preserving food and extending its shelf life. The biopreservation of food, especially utilizing lactic acid bacteria (LAB) that are inhibitory to food spoilage microbes, has been practiced since early ages, at first unconsciously but eventually with an increasingly robust scientific foundation. Beneficial bacteria or the fermentation products produced by these bacteria are used in biopreservation to control spoilage and render pathogens inactive in food. There are a various modes of action through which microorganisms can interfere with the growth of others such as organic acid production, resulting in a reduction of pH and the antimicrobial activity of the un-dissociated acid molecules, a wide variety of small inhibitory molecules including hydrogen peroxide, etc. It is a benign ecological approach which is gaining increasing attention.

<span class="mw-page-title-main">Food spoilage</span> Often due to bacteria and fungi

Food spoilage is the process where a food product becomes unsuitable to ingest by the consumer. The cause of such a process is due to many outside factors as a side-effect of the type of product it is, as well as how the product is packaged and stored. Due to food spoilage, one-third of the world's food produced for the consumption of humans is lost every year. Bacteria and various fungi are the cause of spoilage and can create serious consequences for the consumers, but there are preventive measures that can be taken.

<span class="mw-page-title-main">Canned fish</span> Processed fish preserved in an airtight container

Canned or tinned fish are food fish which have been processed, sealed in an airtight container such as a sealed tin can, and subjected to heat. Canning is a method of preserving food, and provides a typical shelf life ranging from one to five years.

<span class="mw-page-title-main">Intermediate moisture food</span> Shelf-stable food products with moisture contents of 15-40%

Intermediate moisture foods (IMF) are shelf-stable products that have water activities of 0.6-0.84, with a moisture content ranging from 15% - 40% and are edible without rehydration. These food products are below the minimum water activity for most bacteria (0.90), but are susceptible to yeast and mold growth. Historically, ancient civilizations would produce IMF using methods such as sun drying, roasting over fire and adding salt to preserve food for winter months or when preparing for travel. Currently, this form of processing is achieved by using one of four methods: partial drying, osmotic drying using a humectant, dry infusion and by formulation. A variety of products are classified as IMF, such as dried fruits, sugar added commodities, marshmallows, and pie fillings.

References

  1. M.N., Moorjani (1998). Fish Processing in India. New Delhi: ICAR.
  2. Charls L., Cutting (2002). Fish Processing and Preservation.
  3. FAO Fisheries and Aquaculture (2008) Globalisation and Fisheries: Proceedings of an OECD-FAO Workshop Organisation for Economic Co-operation and Development, OECD Publishing. ISBN   9789264037762.
  4. Huss HH (1988) Quality and quality changes in fresh fish FAO Fisheries Technical Paper 348, Rome. ISBN   92-5-103507-5.
  5. 1 2 3 4 5 6 7 FAO: Preservation techniques Fisheries and aquaculture department, Rome. Updated 27 May 2005. Retrieved 14 March 2011.
  6. FAO: Handling of fish and fish products Fisheries and aquaculture department, Rome. Updated 27 May 2005. Retrieved 22 July 2012.
  7. Kauffeld M, Kawaji M and Egol PW (Eds.) (2005)Handbook on ice slurries: fundamentals and engineering, International Institute of Refrigeration. ISBN   978-2-913149-42-7.
  8. "Deepchill™ Variable-State Ice in a Poultry Processing Plant in Korea". Archived from the original on February 6, 2012. Retrieved December 4, 2010.
  9. "Results of Liquid Ice Trails aboard Challenge II" (PDF). April 27, 2003. Archived from the original (PDF) on January 29, 2016. Retrieved December 4, 2010.
  10. Ananou1 S, Maqueda1 M, Martínez-Bueno1 M and Valdivia1 E (2007) "Biopreservation, an ecological approach to improve the safety and shelf-life of foods" Archived 2011-07-26 at the Wayback Machine In: A. Méndez-Vilas (Ed.) Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Formatex. ISBN   978-84-611-9423-0.
  11. Leistner L and Gould GW (2002) Hurdle technologies: combination treatments for food stability, safety, and quality Springer. ISBN   978-0-306-47263-3.