Freezing-point depression is a drop in the maximum temperature at which a substance freezes, caused when a smaller amount of another, non-volatile substance is added. Examples include adding salt into water (used in ice cream makers and for de-icing roads), alcohol in water, ethylene or propylene glycol in water (used in antifreeze in cars), adding copper to molten silver (used to make solder that flows at a lower temperature than the silver pieces being joined), or the mixing of two solids such as impurities into a finely powdered drug.
In all cases, the substance added/present in smaller amounts is considered the solute, while the original substance present in larger quantity is thought of as the solvent. The resulting liquid solution or solid-solid mixture has a lower freezing point than the pure solvent or solid because the chemical potential of the solvent in the mixture is lower than that of the pure solvent, the difference between the two being proportional to the natural logarithm of the mole fraction. In a similar manner, the chemical potential of the vapor above the solution is lower than that above a pure solvent, which results in boiling-point elevation. Freezing-point depression is what causes sea water (a mixture of salt and other compounds in water) to remain liquid at temperatures below 0 °C (32 °F), the freezing point of pure water.
The freezing point is the temperature at which the liquid solvent and solid solvent are at equilibrium, so that their vapor pressures are equal. When a non-volatile solute is added to a volatile liquid solvent, the solution vapour pressure will be lower than that of the pure solvent. As a result, the solid will reach equilibrium with the solution at a lower temperature than with the pure solvent. [2] This explanation in terms of vapor pressure is equivalent to the argument based on chemical potential, since the chemical potential of a vapor is logarithmically related to pressure. All of the colligative properties result from a lowering of the chemical potential of the solvent in the presence of a solute. This lowering is an entropy effect. The greater randomness of the solution (as compared to the pure solvent) acts in opposition to freezing, so that a lower temperature must be reached, over a broader range, before equilibrium between the liquid solution and solid solution phases is achieved. Melting point determinations are commonly exploited in organic chemistry to aid in identifying substances and to ascertain their purity.
In the liquid solution, the solvent is diluted by the addition of a solute, so that fewer molecules are available to freeze (a lower concentration of solvent exists in a solution versus pure solvent). Re-establishment of equilibrium is achieved at a lower temperature at which the rate of freezing becomes equal to the rate of liquefying. The solute is not occluding or preventing the solvent from solidifying, it is simply diluting it so there is a reduced probability of a solvent making an attempt at freezing in any given moment.
At the lower freezing point, the vapor pressure of the liquid is equal to the vapor pressure of the corresponding solid, and the chemical potentials of the two phases are equal as well.
The phenomenon of freezing-point depression has many practical uses. The radiator fluid in an automobile is a mixture of water and ethylene glycol. The freezing-point depression prevents radiators from freezing in winter. Road salting takes advantage of this effect to lower the freezing point of the ice it is placed on. Lowering the freezing point allows the street ice to melt at lower temperatures, preventing the accumulation of dangerous, slippery ice. Commonly used sodium chloride can depress the freezing point of water to about −21 °C (−6 °F). If the road surface temperature is lower, NaCl becomes ineffective and other salts are used, such as calcium chloride, magnesium chloride or a mixture of many. These salts are somewhat aggressive to metals, especially iron, so in airports safer media such as sodium formate, potassium formate, sodium acetate, and potassium acetate are used instead.
Freezing-point depression is used by some organisms that live in extreme cold. Such creatures have evolved means through which they can produce a high concentration of various compounds such as sorbitol and glycerol. This elevated concentration of solute decreases the freezing point of the water inside them, preventing the organism from freezing solid even as the water around them freezes, or as the air around them becomes very cold. Examples of organisms that produce antifreeze compounds include some species of arctic-living fish such as the rainbow smelt, which produces glycerol and other molecules to survive in frozen-over estuaries during the winter months. [5] In other animals, such as the spring peeper frog (Pseudacris crucifer), the molality is increased temporarily as a reaction to cold temperatures. In the case of the peeper frog, freezing temperatures trigger a large-scale breakdown of glycogen in the frog's liver and subsequent release of massive amounts of glucose into the blood. [6] With the formula below, freezing-point depression can be used to measure the degree of dissociation or the molar mass of the solute. This kind of measurement is called cryoscopy (Greek cryo = cold, scopos = observe; "observe the cold" [7] ) and relies on exact measurement of the freezing point. The degree of dissociation is measured by determining the van 't Hoff factor i by first determining mB and then comparing it to msolute. In this case, the molar mass of the solute must be known. The molar mass of a solute is determined by comparing mB with the amount of solute dissolved. In this case, i must be known, and the procedure is primarily useful for organic compounds using a nonpolar solvent. Cryoscopy is no longer as common a measurement method as it once was, but it was included in textbooks at the turn of the 20th century. As an example, it was still taught as a useful analytic procedure in Cohen's Practical Organic Chemistry of 1910, [8] in which the molar mass of naphthalene is determined using a Beckmann freezing apparatus.
Freezing-point depression can also be used as a purity analysis tool when analyzed by differential scanning calorimetry. The results obtained are in mol%, but the method has its place, where other methods of analysis fail.
In the laboratory, lauric acid may be used to investigate the molar mass of an unknown substance via the freezing-point depression. The choice of lauric acid is convenient because the melting point of the pure compound is relatively high (43.8 °C). Its cryoscopic constant is 3.9 °C·kg/mol. By melting lauric acid with the unknown substance, allowing it to cool, and recording the temperature at which the mixture freezes, the molar mass of the unknown compound may be determined. [9] [ citation needed ]
This is also the same principle acting in the melting-point depression observed when the melting point of an impure solid mixture is measured with a melting-point apparatus since melting and freezing points both refer to the liquid-solid phase transition (albeit in different directions).
In principle, the boiling-point elevation and the freezing-point depression could be used interchangeably for this purpose. However, the cryoscopic constant is larger than the ebullioscopic constant, and the freezing point is often easier to measure with precision, which means measurements using the freezing-point depression are more precise.
FPD measurements are also used in the dairy industry to ensure that milk has not had extra water added. Milk with a FPD of over 0.509 °C is considered to be unadulterated. [10]
If the solution is treated as an ideal solution, the extent of freezing-point depression depends only on the solute concentration that can be estimated by a simple linear relationship with the cryoscopic constant ("Blagden's Law").
where:
Some values of the cryoscopic constant Kf for selected solvents: [11]
Compound | Freezing point (°C) | Kf in K⋅kg/mol |
---|---|---|
Acetic acid | 16.6 | 3.90 |
Benzene | 5.5 | 5.12 |
Camphor | 179.8 | 39.7 |
Carbon disulfide | −112 | 3.8 |
Carbon tetrachloride | −23 | 30 |
Chloroform | −63.5 | 4.68 |
Cyclohexane | 6.4 | 20.2 |
Ethanol | −114.6 | 1.99 |
Ethyl ether | −116.2 | 1.79 |
Naphthalene | 80.2 | 6.9 |
Phenol | 41 | 7.27 |
Water | 0 | 1.86 [12] |
The simple relation above doesn't consider the nature of the solute, so it is only effective in a diluted solution. For a more accurate calculation at a higher concentration, for ionic solutes, Ge and Wang (2010) [13] [14] proposed a new equation:
In the above equation, TF is the normal freezing point of the pure solvent (273 K for water, for example); aliq is the activity of the solvent in the solution (water activity for aqueous solution); ΔHfusTF is the enthalpy change of fusion of the pure solvent at TF, which is 333.6 J/g for water at 273 K; ΔCfusp is the difference between the heat capacities of the liquid and solid phases at TF, which is 2.11 J/(g·K) for water.
The solvent activity can be calculated from the Pitzer model or modified TCPC model, which typically requires 3 adjustable parameters. For the TCPC model, these parameters are available [15] [16] [17] [18] for many single salts.
The freezing point of ethanol water mixture is shown in the following graph.
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.
In thermodynamics, the enthalpy of vaporization, also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. The enthalpy of vaporization is a function of the pressure and temperature at which the transformation takes place.
Raoult's law ( law) is a relation of physical chemistry, with implications in thermodynamics. Proposed by French chemist François-Marie Raoult in 1887, it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component multiplied by its mole fraction in the mixture. In consequence, the relative lowering of vapor pressure of a dilute solution of nonvolatile solute is equal to the mole fraction of solute in the solution.
Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.
In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.
A eutectic system or eutectic mixture is a type of a homogeneous mixture that has a melting point lower than those of the constituents. The lowest possible melting point over all of the mixing ratios of the constituents is called the eutectic temperature. On a phase diagram, the eutectic temperature is seen as the eutectic point.
In chemical thermodynamics, activity is a measure of the "effective concentration" of a species in a mixture, in the sense that the species' chemical potential depends on the activity of a real solution in the same way that it would depend on concentration for an ideal solution. The term "activity" in this sense was coined by the American chemist Gilbert N. Lewis in 1907.
In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century. In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution.
In chemistry, colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. The number ratio can be related to the various units for concentration of a solution such as molarity, molality, normality (chemistry), etc. The assumption that solution properties are independent of nature of solute particles is exact only for ideal solutions, which are solutions that exhibit thermodynamic properties analogous to those of an ideal gas, and is approximate for dilute real solutions. In other words, colligative properties are a set of solution properties that can be reasonably approximated by the assumption that the solution is ideal.
In thermodynamics, the entropy of fusion is the increase in entropy when melting a solid substance. This is almost always positive since the degree of disorder increases in the transition from an organized crystalline solid to the disorganized structure of a liquid; the only known exception is helium. It is denoted as and normally expressed in joules per mole-kelvin, J/(mol·K).
Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, cooling rate, and in the case of liquid crystals, time of fluid evaporation.
In thermodynamics, the cryoscopic constant, Kf, relates molality to freezing point depression. It is the ratio of the latter to the former:
Boiling-point elevation is the phenomenon whereby the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent. This happens whenever a non-volatile solute, such as a salt, is added to a pure solvent, such as water. The boiling point can be measured accurately using an ebullioscope.
In thermodynamics, the ebullioscopic constantKb relates molality b to boiling point elevation. It is the ratio of the latter to the former:
In thermodynamics and chemical engineering, the vapor–liquid equilibrium (VLE) describes the distribution of a chemical species between the vapor phase and a liquid phase.
This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.
An osmotic coefficient is a quantity which characterises the deviation of a solvent from ideal behaviour, referenced to Raoult's law. It can be also applied to solutes. Its definition depends on the ways of expressing chemical composition of mixtures.
In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
The Gibbs–Thomson effect, in common physics usage, refers to variations in vapor pressure or chemical potential across a curved surface or interface. The existence of a positive interfacial energy will increase the energy required to form small particles with high curvature, and these particles will exhibit an increased vapor pressure. See Ostwald–Freundlich equation. More specifically, the Gibbs–Thomson effect refers to the observation that small crystals are in equilibrium with their liquid melt at a lower temperature than large crystals. In cases of confined geometry, such as liquids contained within porous media, this leads to a depression in the freezing point / melting point that is inversely proportional to the pore size, as given by the Gibbs–Thomson equation.
In thermochemistry, the heat of dilution, or enthalpy of dilution, refers to the enthalpy change associated with the dilution process of a component in a solution at a constant pressure. If the initial state of the component is a pure liquid, the dilution process is equal to its dissolution process and the heat of dilution is the same as the heat of solution. Generally, the heat of dilution is normalized by the amount of the solution and its dimensional units are energy per unit mass or amount of substance, commonly expressed in the unit of kJ/mol.
{{cite web}}
: CS1 maint: archived copy as title (link)