Ideal solution

Last updated

In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. [1] The enthalpy of mixing is zero [2] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively, [3] and the activity coefficient (which measures deviation from ideality) is equal to one for each component. [4]

Contents

The concept of an ideal solution is fundamental to chemical thermodynamics and its applications, such as the explanation of colligative properties.

Physical origin

Ideality of solutions is analogous to ideality for gases, with the important difference that intermolecular interactions in liquids are strong and cannot simply be neglected as they can for ideal gases. Instead we assume that the mean strength of the interactions are the same between all the molecules of the solution.

More formally, for a mix of molecules of A and B, then the interactions between unlike neighbors (UAB) and like neighbors UAA and UBB must be of the same average strength, i.e., 2 UAB = UAA + UBB and the longer-range interactions must be nil (or at least indistinguishable). If the molecular forces are the same between AA, AB and BB, i.e., UAB = UAA = UBB, then the solution is automatically ideal.

If the molecules are almost identical chemically, e.g., 1-butanol and 2-butanol, then the solution will be almost ideal. Since the interaction energies between A and B are almost equal, it follows that there is only a very small overall energy (enthalpy) change when the substances are mixed. The more dissimilar the nature of A and B, the more strongly the solution is expected to deviate from ideality.

Formal definition

Different related definitions of an ideal solution have been proposed. The simplest definition is that an ideal solution is a solution for which each component obeys Raoult's law for all compositions. Here is the vapor pressure of component above the solution, is its mole fraction and is the vapor pressure of the pure substance at the same temperature. [5] [6] [7]

This definition depends on vapor pressure, which is a directly measurable property, at least for volatile components. The thermodynamic properties may then be obtained from the chemical potential μ (which is the partial molar Gibbs energy g) of each component. If the vapor is an ideal gas,

The reference pressure may be taken as = 1 bar, or as the pressure of the mix, whichever is simpler.

On substituting the value of from Raoult's law,

This equation for the chemical potential can be used as an alternate definition for an ideal solution.

However, the vapor above the solution may not actually behave as a mixture of ideal gases. Some authors therefore define an ideal solution as one for which each component obeys the fugacity analogue of Raoult's law . Here is the fugacity of component in solution and is the fugacity of as a pure substance. [8] [9] Since the fugacity is defined by the equation

this definition leads to ideal values of the chemical potential and other thermodynamic properties even when the component vapors above the solution are not ideal gases. An equivalent statement uses thermodynamic activity instead of fugacity. [10]

Thermodynamic properties

Volume

If we differentiate this last equation with respect to at constant we get:

Since we know from the Gibbs potential equation that:

with the molar volume , these last two equations put together give:

Since all this, done as a pure substance, is valid in an ideal mix just adding the subscript to all the intensive variables and changing to , with optional overbar, standing for partial molar volume:

Applying the first equation of this section to this last equation we find:

which means that the partial molar volumes in an ideal mix are independent of composition. Consequently, the total volume is the sum of the volumes of the components in their pure forms:

Enthalpy and heat capacity

Proceeding in a similar way but taking the derivative with respect to we get a similar result for molar enthalpies:

Remembering that we get:

which in turn means that and that the enthalpy of the mix is equal to the sum of its component enthalpies.

Since and , similarly

It is also easily verifiable that

Entropy of mixing

Finally since

we find that

Since the Gibbs free energy per mole of the mixture is

then

At last we can calculate the molar entropy of mixing since and

Consequences

Solvent–solute interactions are the same as solute–solute and solvent–solvent interactions, on average. Consequently, the enthalpy of mixing (solution) is zero and the change in Gibbs free energy on mixing is determined solely by the entropy of mixing. Hence the molar Gibbs free energy of mixing is

or for a two-component ideal solution

where m denotes molar, i.e., change in Gibbs free energy per mole of solution, and is the mole fraction of component . Note that this free energy of mixing is always negative (since each , each or its limit for must be negative (infinite)), i.e., ideal solutions are miscible at any composition and no phase separation will occur.

The equation above can be expressed in terms of chemical potentials of the individual components

where is the change in chemical potential of on mixing. If the chemical potential of pure liquid is denoted , then the chemical potential of in an ideal solution is

Any component of an ideal solution obeys Raoult's Law over the entire composition range:

where is the equilibrium vapor pressure of pure component and is the mole fraction of component in solution.

Non-ideality

Deviations from ideality can be described by the use of Margules functions or activity coefficients. A single Margules parameter may be sufficient to describe the properties of the solution if the deviations from ideality are modest; such solutions are termed regular .

In contrast to ideal solutions, where volumes are strictly additive and mixing is always complete, the volume of a non-ideal solution is not, in general, the simple sum of the volumes of the component pure liquids and solubility is not guaranteed over the whole composition range. By measurement of densities, thermodynamic activity of components can be determined.

See also

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

Raoult's law ( law) is a relation of physical chemistry, with implications in thermodynamics. Proposed by French chemist François-Marie Raoult in 1887, it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component multiplied by its mole fraction in the mixture. In consequence, the relative lowering of vapor pressure of a dilute solution of nonvolatile solute is equal to the mole fraction of solute in the solution.

In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction from the standard electrode potential, absolute temperature, the number of electrons involved in the oxydo-reduction reaction, and activities of the chemical species undergoing reduction and oxidation respectively. It was named after Walther Nernst, a German physical chemist who formulated the equation.

Eutectic system Mixture with a lower melting point than its constituents

A eutectic system from the Greek εὐ- and τῆξῐς is a homogeneous mixture of substances that melts or solidifies at a single temperature that is lower than the melting point of any of the constituents. This temperature is known as the eutectic temperature, and is the lowest possible melting temperature over all of the mixing ratios for the involved component species. On a phase diagram, the eutectic temperature is seen as the eutectic point.

In chemical thermodynamics, activity is a measure of the "effective concentration" of a species in a mixture, in the sense that the species' chemical potential depends on the activity of a real solution in the same way that it would depend on concentration for an ideal solution. The term "activity" in this sense was coined by the American chemist Gilbert N. Lewis in 1907.

In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species in a mixture is defined as the rate of change of free energy of a thermodynamic system with respect to the change in the number of atoms or molecules of the species that are added to the system. Thus, it is the partial derivative of the free energy with respect to the amount of the species, all other species' concentrations in the mixture remaining constant. When both temperature and pressure are held constant, and the number of particles is expressed in moles, the chemical potential is the partial molar Gibbs free energy. At chemical equilibrium or in phase equilibrium, the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a minimum. In a system in diffusion equilibrium, the chemical potential of any chemical species is uniformly the same everywhere throughout the system.

Gibbs free energy Type of thermodynamic potential; useful for calculating reversible work in certain systems

In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions.

In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century.

In chemistry, colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. The number ratio can be related to the various units for concentration of a solution such as molarity, molality, normality (chemistry), etc. The assumption that solution properties are independent of nature of solute particles is exact only for ideal solutions, which are solutions that exhibit thermodynamic properties analogous to those of an ideal gas, and is approximate for dilute real solutions. In other words, colligative properties are a set of solution properties that can be reasonably approximated by the assumption that the solution is ideal.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

In chemical thermodynamics, the fugacity of a real gas is an effective partial pressure which replaces the mechanical partial pressure in an accurate computation of the chemical equilibrium constant. It is equal to the pressure of an ideal gas which has the same temperature and molar Gibbs free energy as the real gas.

An activity coefficient is a factor used in thermodynamics to account for deviations from ideal behaviour in a mixture of chemical substances. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.

The Goldman–Hodgkin–Katz voltage equation, more commonly known as the Goldman equation, is used in cell membrane physiology to determine the reversal potential across a cell's membrane, taking into account all of the ions that are permeant through that membrane.

The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is:

In thermodynamics, the Gibbs–Duhem equation describes the relationship between changes in chemical potential for components in a thermodynamic system:

A partial molar property is a thermodynamic quantity which describes the variation of an extensive property of a solution or mixture with changes in the molar composition of the mixture at constant temperature and pressure. It is the partial derivative of the extensive property with respect to the amount of the component of interest. Every extensive property of a mixture has a corresponding partial molar property.

Enthalpy of fusion Enthalpy change when a substance melts

The enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure. For example, when melting 1 kg of ice, 333.55 kJ of energy is absorbed with no temperature change. The heat of solidification is equal and opposite.

The Duhem–Margules equation, named for Pierre Duhem and Max Margules, is a thermodynamic statement of the relationship between the two components of a single liquid where the vapour mixture is regarded as an ideal gas:

Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero. This principle, applied to mixtures at equilibrium provides a definition of an equilibrium constant. Applications include acid–base, host–guest, metal–complex, solubility, partition, chromatography and redox equilibria.

In chemical thermodynamics, excess properties are properties of mixtures which quantify the non-ideal behavior of real mixtures. They are defined as the difference between the value of the property in a real mixture and the value that would exist in an ideal solution under the same conditions. The most frequently used excess properties are the excess volume, excess enthalpy, and excess chemical potential. The excess volume, internal energy, and enthalpy are identical to the corresponding mixing properties; that is,

References

  1. Felder, Richard M.; Rousseau, Ronald W.; Bullard, Lisa G. (2005). Elementary Principles of Chemical Processes . Wiley. p.  293. ISBN   978-0471687573.
  2. A to Z of Thermodynamics Pierre Perrot ISBN   0-19-856556-9
  3. Felder, Richard M.; Rousseau, Ronald W.; Bullard, Lisa G. Elementary Principles of Chemical Processes. Wiley. p. 293. ISBN   978-0471687573.
  4. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " ideal mixture ". doi : 10.1351/goldbook.I02938
  5. P. Atkins and J. de Paula, Atkins’ Physical Chemistry (8th edn, W.H.Freeman 2006), p.144
  6. T. Engel and P. Reid Physical Chemistry (Pearson 2006), p.194
  7. K.J. Laidler and J.H. Meiser Physical Chemistry (Benjamin-Cummings 1982), p.180
  8. R.S. Berry, S.A. Rice and J. Ross, Physical Chemistry (Wiley 1980) p.750
  9. I.M. Klotz, Chemical Thermodynamics (Benjamin 1964) p.322
  10. P.A. Rock, Chemical Thermodynamics: Principles and Applications (Macmillan 1969), p.261