Melting-point depression

Last updated
This article deals with melting/freezing point depression due to very small particle size. For depression due to the mixture of another compound, see freezing-point depression.

Melting-point depression is the phenomenon of reduction of the melting point of a material with a reduction of its size. This phenomenon is very prominent in nanoscale materials, which melt at temperatures hundreds of degrees lower than bulk materials.

Contents

Introduction

The melting temperature of a bulk material is not dependent on its size. However, as the dimensions of a material decrease towards the atomic scale, the melting temperature scales with the material dimensions. The decrease in melting temperature can be on the order of tens to hundreds of degrees for metals with nanometer dimensions. [1] [2] [3]

Melting-point depression is most evident in nanowires, nanotubes and nanoparticles, which all melt at lower temperatures than bulk amounts of the same material. Changes in melting point occur because nanoscale materials have a much larger surface-to-volume ratio than bulk materials, drastically altering their thermodynamic and thermal properties.

Melting-point depression was mostly studied for nanoparticles, owing to their ease of fabrication and theoretical modeling. The melting temperature of a nanoparticle decreases sharply as the particle reaches critical diameter, usually < 50 nm for common engineering metals. [1] [2] [4]

A normalized melting curve for gold as a function of nanoparticle diameter. The bulk melting temperature and melting temperature of the particle are denoted TMB and TM respectively. Experimental melting curves for near-spherical metal nanoparticles exhibit a similarly shaped curve. Melting Point Au.jpg
A normalized melting curve for gold as a function of nanoparticle diameter. The bulk melting temperature and melting temperature of the particle are denoted TMB and TM respectively. Experimental melting curves for near-spherical metal nanoparticles exhibit a similarly shaped curve.

Melting point depression is a very important issue for applications involving nanoparticles, as it decreases the functional range of the solid phase. Nanoparticles are currently used or proposed for prominent roles in catalyst, sensor, medicinal, optical, magnetic, thermal, electronic, and alternative energy applications. [6] Nanoparticles must be in a solid state to function at elevated temperatures in several of these applications.

Measurement techniques

Two techniques allow measurement of the melting point of the nanoparticle. The electron beam of a transmission electron microscope (TEM) can be used to melt nanoparticles. [7] [8] The melting temperature is estimated from the beam intensity, while changes in the diffraction conditions to indicate phase transition from solid to liquid. This method allows direct viewing of nanoparticles as they melt, making it possible to test and characterize samples with a wider distribution of particle sizes. The TEM limits the pressure range at which melting point depression can be tested.

More recently, researchers developed nanocalorimeters that directly measure the enthalpy and melting temperature of nanoparticles. [4] Nanocalorimeters provide the same data as bulk calorimeters, however, additional calculations must account for the presence of the substrate supporting the particles. A narrow size distribution of nanoparticles is required since the procedure does not allow users to view the sample during the melting process. There is no way to characterize the exact size of melted particles during the experiment.

History

Melting point depression was predicted in 1909 by Pawlow. [9] It was directly observed inside an electron microscope in the 1960s–70s [10] for nanoparticles of Pb, [11] [12] Au, [13] [14] and In. [12]

Physics

Nanoparticles have a much greater surface-to-volume ratio than bulk materials. The increased surface-to-volume ratio means surface atoms have a much greater effect on the chemical and physical properties of a nanoparticle. Surface atoms bind in the solid phase with less cohesive energy because they have fewer neighboring atoms in close proximity compared to atoms in the bulk of the solid. Each chemical bond an atom shares with a neighboring atom provides cohesive energy, so atoms with fewer bonds and neighboring atoms have lower cohesive energy. The cohesive energy of the nanoparticle has been theoretically calculated as a function of particle size according to Equation 1. [15]

Where: D = nanoparticle size

d = atomic size
Eb = cohesive energy of bulk

As Equation 1 shows, the effective cohesive energy of a nanoparticle approaches that of the bulk material as the material extends beyond the atomic size range (D>>d).

Atoms located at or near the surface of the nanoparticle have reduced cohesive energy due to a reduced number of cohesive bonds. An atom experiences an attractive force with all nearby atoms according to the Lennard-Jones potential.

A Lennard-Jones potential energy curve. The model shows the interactive energy between 2 atoms at a normalized distance, d/d0, where d0=atomic diameter. The interaction energy is attractive where the curve is negative, and the magnitude of the energy represents the cohesive energy between a pair of atoms. Note that the attractive potential extends over a long range beyond the length of a chemical bond, so atoms experience cohesive energy with atoms further than their nearest neighbors. Lennard-Jones.jpg
A Lennard-Jones potential energy curve. The model shows the interactive energy between 2 atoms at a normalized distance, d/d0, where d0=atomic diameter. The interaction energy is attractive where the curve is negative, and the magnitude of the energy represents the cohesive energy between a pair of atoms. Note that the attractive potential extends over a long range beyond the length of a chemical bond, so atoms experience cohesive energy with atoms further than their nearest neighbors.

The cohesive energy of an atom is directly related to the thermal energy required to free the atom from the solid. According to Lindemann's criterion, the melting temperature of a material is proportional to its cohesive energy, av (TM=Cav). [16] Since atoms near the surface have fewer bonds and reduced cohesive energy, they require less energy to free from the solid phase. Melting point depression of high surface-to-volume ratio materials results from this effect. For the same reason, surfaces of nanomaterials can melt at lower temperatures than the bulk material. [17]

The theoretical size-dependent melting point of a material can be calculated through classical thermodynamic analysis. The result is the Gibbs–Thomson equation shown in Equation 2. [2]

Where: TMB = bulk melting temperature

σsl = solid–liquid interface energy
Hf = Bulk heat of fusion
ρs = density of solid
d = particle diameter

Semiconductor/covalent nanoparticles

Equation 2 gives the general relation between the melting point of a metal nanoparticle and its diameter. However, recent work indicates the melting point of semiconductor and covalently bonded nanoparticles may have a different dependence on particle size. [18] The covalent character of the bonds changes the melting physics of these materials. Researchers have demonstrated that Equation 3 more accurately models melting point depression in covalently bonded materials. [18]


Where: TMB=bulk melting temperature

c=materials constant
d=particle diameter

Equation 3 indicates that melting point depression is less pronounced in covalent nanoparticles due to the quadratic nature of particle size dependence in the melting Equation.

Proposed mechanisms

The specific melting process for nanoparticles is currently unknown. The scientific community currently accepts several mechanisms as possible models of nanoparticle melting. [18] Each of the corresponding models effectively matches experimental data for the melting of nanoparticles. Three of the four models detailed below derive the melting temperature in a similar form using different approaches based on classical thermodynamics.

Liquid drop model

The liquid drop model (LDM) assumes that an entire nanoparticle transitions from solid to liquid at a single temperature. [16] This feature distinguishes the model, as the other models predict melting of the nanoparticle surface prior to the bulk atoms. If the LDM is true, a solid nanoparticle should function over a greater temperature range than other models predict. The LDM assumes that the surface atoms of a nanoparticle dominate the properties of all atoms in the particle. The cohesive energy of the particle is identical for all atoms in the nanoparticle.

The LDM represents the binding energy of nanoparticles as a function of the free energies of the volume and surface. [16] Equation 4 gives the normalized, size-dependent melting temperature of a material according to the liquid-drop model.

Where: σsv=solid-vapor interface energy

σlv=liquid-vapor interface energy
Hf=Bulk heat of fusion
ρs=density of solid
ρl=density of liquid
d=diameter of nanoparticle

Liquid shell nucleation model

The liquid shell nucleation model (LSN) predicts that a surface layer of atoms melts prior to the bulk of the particle. [19] The melting temperature of a nanoparticle is a function of its radius of curvature according to the LSN. Large nanoparticles melt at greater temperatures as a result of their larger radius of curvature.

The model calculates melting conditions as a function of two competing order parameters using Landau potentials. One order parameter represents a solid nanoparticle, while the other represents the liquid phase. Each of the order parameters is a function of particle radius.

The parabolic Landau potentials for the liquid and solid phases are calculated at a given temperature, with the lesser Landau potential assumed to be the equilibrium state at any point in the particle. In the temperature range of surface melting, the results show that the Landau curve of the ordered state is favored near the center of the particle while the Landau curve of the disordered state is smaller near the surface of the particle.

The Landau curves intersect at a specific radius from the center of the particle. The distinct intersection of the potentials means the LSN predicts a sharp, unmoving interface between the solid and liquid phases at a given temperature. The exact thickness of the liquid layer at a given temperature is the equilibrium point between the competing Landau potentials.

Equation 5 gives the condition at which an entire nanoparticle melts according to the LSN model. [20]


Where: d0=atomic diameter

Liquid nucleation and growth model

The liquid nucleation and growth model (LNG) treats nanoparticle melting as a surface-initiated process. [21] The surface melts initially, and the liquid-solid interface quickly advances through the entire nanoparticle. The LNG defines melting conditions through the Gibbs-Duhem relations, yielding a melting temperature function dependent on the interfacial energies between the solid and liquid phases, the volumes and surface areas of each phase, and the size of the nanoparticle. The model calculations show that the liquid phase forms at lower temperatures for smaller nanoparticles. Once the liquid phase forms, the free energy conditions quickly change and favor melting. Equation 6 gives the melting conditions for a spherical nanoparticle according to the LNG model. [20]

Bond-order-length-strength (BOLS) model

The bond-order-length-strength (BOLS) model employs an atomistic approach to explain melting point depression. [20] The model focuses on the cohesive energy of individual atoms rather than a classical thermodynamic approach. The BOLS model calculates the melting temperature for individual atoms from the sum of their cohesive bonds. As a result, the BOLS predicts the surface layers of a nanoparticle melt at lower temperatures than the bulk of the nanoparticle.

The BOLS mechanism states that if one bond breaks, the remaining neighbouring ones become shorter and stronger. The cohesive energy, or the sum of bond energy, of the less coordinated atoms determines the thermal stability, including melting, evaporating and other phase transition. The lowered CN changes the equilibrium bond length between atoms near the surface of the nanoparticle. The bonds relax towards equilibrium lengths, increasing the cohesive energy per bond between atoms, independent of the exact form of the specific interatomic potential. However, the integrated, cohesive energy for surface atoms is much lower than for bulk atoms due to the reduced coordination number and an overall decrease in cohesive energy.

Using a core–shell configuration, the melting point depression of nanoparticles is dominated by the outermost two atomic layers, yet atoms in the core interior retain their bulk nature.

The BOLS model and the core–shell structure have been applied to other size dependencies of nanostructures such as the mechanical strength, chemical and thermal stability, lattice dynamics (optical and acoustic phonons), Photon emission and absorption, electronic colevel shift and work function modulation, magnetism at various temperatures, and dielectrics due to electron polarization etc. Reproduction of experimental observations in the above-mentioned size dependency has been realized. Quantitative information, such as the energy level of an isolated atom and the vibration frequency of individual dimer, has been obtained by matching the BOLS predictions to the measured size dependency. [21]

Particle shape

Nanoparticle shape impacts the melting point of a nanoparticle. Facets, edges and deviations from a perfect sphere all change the magnitude of melting point depression. [16] These shape changes affect the surface -to-volume ratio, which affects the cohesive energy and thermal properties of a nanostructure. Equation 7 gives a general shape-corrected formula for the theoretical melting point of a nanoparticle-based on its size and shape. [16]


Where: c=materials constant

z=shape parameter of particle

The shape parameter is 1 for a sphere and 3/2 for a very long wire, indicating that melting-point depression is suppressed in nanowires compared to nanoparticles. Past experimental data show that nanoscale tin platelets melt within a narrow range of 10 °C of the bulk melting temperature. [8] The melting point depression of these platelets was suppressed compared to spherical tin nanoparticles. [4]

Substrate

Several nanoparticle melting simulations theorize that the supporting substrate affects the extent of melting-point depression of a nanoparticle. [1] [22] [23] These models account for energetic interactions between the substrate materials. A free nanoparticle, as many theoretical models assume, has a different melting temperature (usually lower) than a supported particle due to the absence of cohesive energy between the nanoparticle and substrate. However, measurement of the properties of a freestanding nanoparticle remains impossible, so the extent of the interactions cannot be verified through an experiment. Ultimately, substrates currently support nanoparticles for all nanoparticle applications, so substrate/nanoparticle interactions are always present and must impact melting point depression.

Solubility

Within the size–pressure approximation, which considers the stress induced by the surface tension and the curvature of the particle, it was shown that the size of the particle affects the composition and temperature of a eutectic point (Fe-C [1] ), the solubility of C in Fe [24] and Fe:Mo nanoclusters. [25] Reduced solubility can affect the catalytic properties of nanoparticles. In fact it, has been shown that size-induced instability of Fe-C mixtures represents the thermodynamic limit for the thinnest nanotube that can be grown from Fe nanocatalysts. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Melting</span> Material phase change

Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which increases the substance's temperature to the melting point. At the melting point, the ordering of ions or molecules in the solid breaks down to a less ordered state, and the solid melts to become a liquid.

<span class="mw-page-title-main">Melting point</span> Temperature at which a solid turns liquid

The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.

<span class="mw-page-title-main">Sintering</span> Process of forming and bonding material by heat or pressure

Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plastics, and other materials. The atoms/molecules in the sintered material diffuse across the boundaries of the particles, fusing the particles together and creating a solid piece.

<span class="mw-page-title-main">Curie temperature</span> Temperature above which magnetic properties change

In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism is lost at a critical temperature.

<span class="mw-page-title-main">Third law of thermodynamics</span> Law of physics

The third law of thermodynamics states that the entropy of a closed system at thermodynamic equilibrium approaches a constant value when its temperature approaches absolute zero. This constant value cannot depend on any other parameters characterizing the system, such as pressure or applied magnetic field. At absolute zero the system must be in a state with the minimum possible energy.

<span class="mw-page-title-main">Surface energy</span> Excess energy at the surface of a material relative to its interior

In surface science, surface energy quantifies the disruption of intermolecular bonds that occurs when a surface is created. In solid-state physics, surfaces must be intrinsically less energetically favorable than the bulk of the material, otherwise there would be a driving force for surfaces to be created, removing the bulk of the material by sublimation. The surface energy may therefore be defined as the excess energy at the surface of a material compared to the bulk, or it is the work required to build an area of a particular surface. Another way to view the surface energy is to relate it to the work required to cut a bulk sample, creating two surfaces. There is "excess energy" as a result of the now-incomplete, unrealized bonding between the two created surfaces.

<span class="mw-page-title-main">Potential well</span> Concept in quantum mechanics

A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy because it is captured in the local minimum of a potential well. Therefore, a body may not proceed to the global minimum of potential energy, as it would naturally tend to do due to entropy.

<span class="mw-page-title-main">Creep (deformation)</span> Tendency of a solid material to move slowly or deform permanently under mechanical stress

In materials science, creep is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increases as they near their melting point.

<span class="mw-page-title-main">Granular material</span> Conglomeration of discrete solid, macroscopic particles

A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact. The constituents that compose granular material are large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 μm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the Solar System with individual grains being asteroids.

<span class="mw-page-title-main">Nanoparticle</span> Particle with size less than 100 nm

A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

<span class="mw-page-title-main">Ostwald ripening</span> Process by which small crystals dissolve in solution for the benefit of larger crystals

Ostwald ripening is a phenomenon observed in solid solutions and liquid sols that involves the change of an inhomogeneous structure over time, in that small crystals or sol particles first dissolve and then redeposit onto larger crystals or sol particles.

Premelting refers to a quasi-liquid film that can occur on the surface of a solid even below melting point. The thickness of the film is temperature dependent. This effect is common for all crystalline materials. Premelting shows its effects in frost heave, and, taking grain boundary interfaces into account, maybe even in the movement of glaciers.

<span class="mw-page-title-main">Nanocrystalline material</span>

A nanocrystalline (NC) material is a polycrystalline material with a crystallite size of only a few nanometers. These materials fill the gap between amorphous materials without any long range order and conventional coarse-grained materials. Definitions vary, but nanocrystalline material is commonly defined as a crystallite (grain) size below 100 nm. Grain sizes from 100 to 500 nm are typically considered "ultrafine" grains.

In materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and adsorption are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from solid solutions, whereas adsorption is generally used to describe such partitioning from liquids and gases to surfaces. The molecular-level segregation discussed in this article is distinct from other types of materials phenomena that are often called segregation, such as particle segregation in granular materials, and phase separation or precipitation, wherein molecules are segregated in to macroscopic regions of different compositions. Segregation has many practical consequences, ranging from the formation of soap bubbles, to microstructural engineering in materials science, to the stabilization of colloidal suspensions.

<span class="mw-page-title-main">Vapor–liquid–solid method</span> Mechanism to grow nano wires

The vapor–liquid–solid method (VLS) is a mechanism for the growth of one-dimensional structures, such as nanowires, from chemical vapor deposition. The growth of a crystal through direct adsorption of a gas phase on to a solid surface is generally very slow. The VLS mechanism circumvents this by introducing a catalytic liquid alloy phase which can rapidly adsorb a vapor to supersaturation levels, and from which crystal growth can subsequently occur from nucleated seeds at the liquid–solid interface. The physical characteristics of nanowires grown in this manner depend, in a controllable way, upon the size and physical properties of the liquid alloy.

<span class="mw-page-title-main">Surface stress</span> Change of surface energy with strain

Surface stress was first defined by Josiah Willard Gibbs (1839–1903) as the amount of the reversible work per unit area needed to elastically stretch a pre-existing surface. Depending upon the convention used, the area is either the original, unstretched one which represents a constant number of atoms, or sometimes is the final area; these are atomistic versus continuum definitions. Some care is needed to ensure that the definition used is also consistent with the elastic strain energy, and misinterpretations and disagreements have occurred in the literature.

Nuclear magnetic resonance (NMR) in porous materials covers the application of using NMR as a tool to study the structure of porous media and various processes occurring in them. This technique allows the determination of characteristics such as the porosity and pore size distribution, the permeability, the water saturation, the wettability, etc.

Thermoporometry and cryoporometry are methods for measuring porosity and pore-size distributions. A small region of solid melts at a lower temperature than the bulk solid, as given by the Gibbs–Thomson equation. Thus, if a liquid is imbibed into a porous material, and then frozen, the melting temperature will provide information on the pore-size distribution. The detection of the melting can be done by sensing the transient heat flows during phase transitions using differential scanning calorimetry – DSC thermoporometry, measuring the quantity of mobile liquid using nuclear magnetic resonance – NMR cryoporometry (NMRC) or measuring the amplitude of neutron scattering from the imbibed crystalline or liquid phases – ND cryoporometry (NDC).

The Gibbs–Thomson effect, in common physics usage, refers to variations in vapor pressure or chemical potential across a curved surface or interface. The existence of a positive interfacial energy will increase the energy required to form small particles with high curvature, and these particles will exhibit an increased vapor pressure. See Ostwald–Freundlich equation. More specifically, the Gibbs–Thomson effect refers to the observation that small crystals that are in equilibrium with their liquid, melt at a lower temperature than large crystals. In cases of confined geometry, such as liquids contained within porous media, this leads to a depression in the freezing point / melting point that is inversely proportional to the pore size, as given by the Gibbs–Thomson equation.

The Strange–Rahman–Smith equation is used in the cryoporometry method of measuring porosity. NMR cryoporometry is a recent technique for measuring total porosity and pore size distributions. NMRC is based on two equations: the Gibbs–Thomson equation, which maps the melting point depression to pore size, and the Strange–Rahman–Smith equation, which maps the melted signal amplitude at a particular temperature to pore volume.

References

  1. 1 2 3 4 Jiang, Aiqin; Awasthi, Neha; Kolmogorov, Aleksey N.; Setyawan, Wahyu; Börjesson, Anders; Bolton, Kim; Harutyunyan, Avetik R.; Curtarolo, Stefano (2007). "Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles". Phys. Rev. B. 75 (20): 205426. arXiv: cond-mat/0612562 . Bibcode:2007PhRvB..75t5426J. doi:10.1103/PhysRevB.75.205426. S2CID   41977362.
  2. 1 2 3 Sun, J.; Simon, S.L. (2007). "The melting behavior of aluminum nanoparticles". Thermochimica Acta. 463 (1–2): 32. doi:10.1016/j.tca.2007.07.007.
  3. Lopeandía, A.F.; Rodríguez-Viejo, J. (2007). "Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film". Thermochimica Acta. 461 (1–2): 82. doi:10.1016/j.tca.2007.04.010.
  4. 1 2 3 Lai, S. L.; Guo, J. Y.; Petrova, V.; Ramanath, G.; Allen, L. H. (1996). "Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements". Phys. Rev. Lett. 77 (1): 99–102. Bibcode:1996PhRvL..77...99L. doi:10.1103/PhysRevLett.77.99. PMID   10061781.
  5. Buffat, Ph.; Borel, J-P. (1976). "Size effect on the melting temperature of gold particles". Phys. Rev. A. 13 (6): 2287. Bibcode:1976PhRvA..13.2287B. doi:10.1103/PhysRevA.13.2287.
  6. Wildgoose, Gregory G.; Banks, Craig E.; Compton, Richard G. (2005). "Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications". Small. 2 (2): 182–93. doi:10.1002/smll.200500324. PMID   17193018.
  7. Takagi, M. (1954). "Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films". J. Phys. Soc. Jpn. 9 (3): 359. Bibcode:1954JPSJ....9..359T. doi:10.1143/JPSJ.9.359.
  8. 1 2 Allen, G.L.; Bayles, R.A.; Gile, W.W.; Jesser, W.A. (1986). "Small particle melting of pure metals". Thin Solid Films. 144 (2): 297. Bibcode:1986TSF...144..297A. doi:10.1016/0040-6090(86)90422-0.
  9. Pawlow, P. (1909). "Ober die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz.)". Zeitschrift für Physikalische Chemie. 65U: 545–548. doi:10.1515/zpch-1909-6532. S2CID   202510144.
  10. Sattler, K.D. (2010). Handbook of Nanophysics: Functional Nanomaterials. Handbook of Nanophysics. CRC Press. p. 2.9. ISBN   978-1-4200-7553-3.
  11. Wronski, C R M. (1967). "The size dependence of the melting point of small particles of tin". British Journal of Applied Physics. 18 (12): 1731–1737. Bibcode:1967BJAP...18.1731W. doi:10.1088/0508-3443/18/12/308.
  12. 1 2 Coombes, C. J. (1972). "The melting of small particles of lead and indium". Journal of Physics F: Metal Physics. 2 (3): 441–449. Bibcode:1972JPhF....2..441C. doi:10.1088/0305-4608/2/3/013.
  13. Blackman, M.; Sambles, J. R. (1970). "Melting of Very Small Particles during Evaporation at Constant Temperature". Nature. 226 (5249): 938. Bibcode:1970Natur.226..938B. doi: 10.1038/226938a0 . PMID   16057606. S2CID   4246595.
  14. Sambles, J. R. (1971). "An electron microscope study of evaporating gold particles: The Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles". Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 324 (1558): 339–351. Bibcode:1971RSPSA.324..339S. doi:10.1098/rspa.1971.0143. S2CID   97700443.
  15. Qi, W. H.; Wang, M. P. (2002). "Size effect on the cohesive energy of nanoparticle". J. Mater. Sci. Lett. 21 (22): 1743. doi:10.1023/A:1020904317133. S2CID   137302841.
  16. 1 2 3 4 5 Nanda, K. K.; Sahu, S. N.; Behera, S. N. (2002). "Liquid-drop model for the size-dependent melting of low-dimensional systems". Phys. Rev. A. 66 (1): 013208. Bibcode:2002PhRvA..66a3208N. doi:10.1103/PhysRevA.66.013208.
  17. Frenken, Joost W. M.; Veen, J. F. van der (1985). "Observation of Surface Melting". Phys. Rev. Lett. 54 (2): 134–137. Bibcode:1985PhRvL..54..134F. doi:10.1103/PhysRevLett.54.134. hdl: 1887/71364 . PMID   10031263.
  18. 1 2 3 Farrell, H. H.; Van Siclen, C. D. (2007). "Binding energy, vapor pressure, and melting point of semiconductor nanoparticles". Journal of Vacuum Science and Technology B. 25 (4): 1441. Bibcode:2007JVSTB..25.1441F. doi:10.1116/1.2748415.
  19. Sakai, H. (1996). "Surface-induced melting of small particles". Surf. Sci. 351 (1–3): 285. Bibcode:1996SurSc.351..285S. doi:10.1016/0039-6028(95)01263-X. S2CID   93267163.
  20. 1 2 3 Sun, Chang Q.; Wang, Y.; Tay, B. K.; Li, S.; Huang, H.; Zhang, Y. B. (2002). "Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom". J. Phys. Chem. B. 106 (41): 10701. doi:10.1021/jp025868l.
  21. 1 2 Sun, C. Q. (2007). "Size dependence of nanostructures: impact or bond order deficiency" (PDF). Progress in Solid State Chemistry. 35: 1–159. doi:10.1016/j.progsolidstchem.2006.03.001.
  22. Couchman, P. R.; Jesser, W. A. (1977). "Thermodynamic theory of size dependence of melting temperature in metals". Nature. 269 (5628): 481. Bibcode:1977Natur.269..481C. doi:10.1038/269481a0. S2CID   4196869.
  23. Foster, D. M.; Pavloudis, Th; Kioseoglou, J.; Palmer, R. E. (13 June 2019). "Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon". Nature Communications. 10 (1): 2583. doi:10.1038/s41467-019-10713-z. PMC   6565695 .
  24. 1 2 Harutyunyan, A. R.; Awasthi, N.; Jiang, A.; Setyawan, W.; Mora, E.; Tokune, T.; Bolton, K.; Curtarolo, S. (2008). "Reduced carbon solubility in Fe nano-clusters and implications for the growth of single-walled carbon nanotubes". Phys. Rev. Lett. 100 (19): 195502. arXiv: 0803.3191 . Bibcode:2008PhRvL.100s5502H. doi:10.1103/PhysRevLett.100.195502. PMID   18518458. S2CID   1319460.
  25. Curtarolo, Stefano; Awasthi, Neha; Setyawan, Wahyu; Jiang, Aiqin; Bolton, Kim; Tokune, Toshio; Harutyunyan, Avetik R. (2008). "Influence of Mo on the Fe:Mo:C nano-catalyst thermodynamics for single-walled carbon nanotube growth". Phys. Rev. B. 78 (5): 054105. arXiv: 0803.3206 . Bibcode:2008PhRvB..78e4105C. doi:10.1103/PhysRevB.78.054105. S2CID   34332297.