Frigorific mixture

Last updated

A frigorific mixture is a mixture of two or more phases in a chemical system that, so long as none of the phases are completely consumed during equilibration, reaches an equilibrium temperature that is independent of the starting temperature of the phases before they are mixed. The equilibrium temperature is also independent of the quantities of the phases used as long as sufficient amounts of each are present to reach equilibrium without consuming one or more.

Contents

Ice

Liquid water and ice, for example, form a frigorific mixture at 0 °C or 32 °F. This mixture was once used to define 0 °C. That temperature is now defined as the triple point of Water with well-defined isotope ratios. A mixture of ammonium chloride, water, and ice form a frigorific mixture at about −17.8 °C or 0 °F. This mixture was once used to define 0 °F. [1] [2]

Explanation

The existence of frigorific mixtures can be viewed as a consequence of the Gibbs phase rule, which describes the relationship at equilibrium between the number of components, the number of coexisting phases, and the number of degrees of freedom permitted by the conditions of heterogeneous equilibrium. Specifically, at constant atmospheric pressure, in a system containing C linearly independent chemical components, if C+1 phases are specified to be present in equilibrium, then the system is fully determined (there are no degrees of freedom). That is, the temperature and the compositions of all phases are determined. Thus, in for example the chemical system H2O-NaCl, which has two components, the simultaneous presence of the three phases liquid, ice, and hydrohalite can exist only at atmospheric pressure at the unique temperature of –21.2 °C[ citation needed ] . The approach to equilibrium of a frigorific mixture involves spontaneous temperature change driven by the conversion of latent heat into sensible heat as the phase proportions adjust to accommodate the decrease in thermodynamic potential associated with the approach to equilibrium.

Other examples

Other examples of frigorific mixtures include: [3]

MaterialsParts (w/w) [4] Equilibrium temperature
Ammonium chloride (NH4Cl)5−12 °C / 10 °F / 261 K
Potassium nitrate (KNO3)5
Water 16
Ammonium chloride (NH4Cl)5−15.5 °C / 4 °F / 257.5 K
Water16
Ammonium nitrate (NH4NO3)1−15.5 °C / 4 °F / 257.5 K
Water1
Sodium sulfate (Na2SO4)3−16 °C / 3 °F / 257 K
Dilute nitric acid (HNO3)2
Sodium sulfate (Na2SO4)8−18 °C / 0 °F / 255 K
Hydrochloric acid (HCl)5
Snow/ice1−18 °C / 0 °F / 255 K
Sodium chloride (NaCl)1
Snow/ice1−26 °C / −15 °F / 247 K
Potassium hydroxide (KOH)1
Snow/ice1−51 °C / −60 °F / 222 K
Sulfuric acid, dilute (H2SO4)1
Snow/ice2−55 °C / −67 °F / 218 K
Calcium chloride (CaCl2)3
Sulfuric acid, dilute (H2SO4)10−68 °C / −90 °F / 205 K
Snow/ice8

Uses

A frigorific mixture may be used to obtain a liquid medium that has a reproducible temperature below ambient temperature. Such mixtures were used to calibrate thermometers. In chemistry a cooling bath may be used to control the temperature of a strongly exothermic reaction.

A frigorific mixture may be used as an alternative to mechanical refrigeration. For example to fit two machined metal parts together, one part is placed in a frigorific mixture, causing it to contract so that may be easily inserted into the uncooled second part; on warming the two parts are held together tightly. Another example is the Piper process, used in the second half of the 19th century for freezing and cold storage of fish. [5]

Limitations of acid base slushes

Mixtures relying on the use of acid base slushes are of limited practical value beyond producing melting point references as the enthalpy of dissolution for the melting point depressant is often significantly greater (e.g. ΔH -57.61 kJ/mol for KOH) than the enthalpy of fusion for water itself (ΔH 6.02 kJ/mol); for reference, ΔH for the dissolution of NaCl is 3.88 kJ/mol. [6] This results in little to no net cooling capacity at the desired temperatures and an end mixture temperature that is higher than it was to begin with. The values claimed in the table are produced by first precooling and then combining each subsequent mixture with it surrounded by a mixture of the previous temperature increment; the mixtures must be 'stacked' within one another. [7] [4] [8]

Such acid base slushes are corrosive and therefore present handling problems. Additionally, they can not be replenished easily, as the volume of the mixture increases with each addition of refrigerant; the container (be it a bath or cold finger) will eventually need emptying and refilling to prevent it from overflowing. This makes these mixtures largely unsuitable for use in synthetic applications, as there will be no cooling surface present during the emptying of the container.

See also

Related Research Articles

<span class="mw-page-title-main">Enthalpy</span> Measure of energy in a thermodynamic system

In thermodynamics, enthalpy, is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work that was done against constant external pressure to establish the system's physical dimensions from to some final volume , i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation, and other chemical "energies" are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

<span class="mw-page-title-main">Melting</span> Material phase change

Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which increases the substance's temperature to the melting point. At the melting point, the ordering of ions or molecules in the solid breaks down to a less ordered state, and the solid melts to become a liquid.

<span class="mw-page-title-main">Phase (matter)</span> Region of uniform physical properties

In the physical sciences, a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase.

<span class="mw-page-title-main">Vapor pressure</span> Pressure exerted by a vapor in thermodynamic equilibrium

Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.

<span class="mw-page-title-main">Melting point</span> Temperature at which a solid turns liquid

The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.

<span class="mw-page-title-main">Phase diagram</span> Chart used to show conditions at which physical phases of a substance occur

A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions at which thermodynamically distinct phases occur and coexist at equilibrium.

<span class="mw-page-title-main">Solubility</span> Capacity of a substance to dissolve in a homogeneous way

In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.

<span class="mw-page-title-main">Eutectic system</span> Mixture with a lower melting point than its constituents

A eutectic system or eutectic mixture is a homogeneous mixture that has a melting point lower than those of the constituents. The lowest possible melting point over all of the mixing ratios of the constituents is called the eutectic temperature. On a phase diagram, the eutectic temperature is seen as the eutectic point.

<span class="mw-page-title-main">Latent heat</span> Thermodynamic phase transition energy

Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation.

<span class="mw-page-title-main">Freezing</span> Phase transition of liquid to solid

Freezing is a phase transition where a liquid turns into a solid when its temperature is lowered below its freezing point. In accordance with the internationally established definition, freezing means the solidification phase change of a liquid or the liquid content of a substance, usually due to cooling.

In thermodynamics, the phase rule is a general principle governing "pVT" systems, whose thermodynamic states are completely described by the variables pressure, volume and temperature, in thermodynamic equilibrium. If F is the number of degrees of freedom, C is the number of components and P is the number of phases, then

<span class="mw-page-title-main">Fractional freezing</span> Separating components of a mixture by their melting points

Fractional freezing is a process used in process engineering and chemistry to separate substances with different melting points. It can be done by partial melting of a solid, for example in zone refining of silicon or metals, or by partial crystallization of a liquid, as in freeze distillation, also called normal freezing or progressive freezing. The initial sample is thus fractionated.

<span class="mw-page-title-main">Freezing-point depression</span> Process in which adding a solute to a solvent decreases the freezing point of the solvent

Freezing-point depression is a drop in the maximum temperature at which a substance freezes, caused when a smaller amount of another, non-volatile substance is added. Examples include adding salt into water, alcohol in water, ethylene or propylene glycol in water, adding copper to molten silver, or the mixing of two solids such as impurities into a finely powdered drug.

<span class="mw-page-title-main">Phase-change material</span> Substance with high latent heat of melting or solidifying

A phase-change material (PCM) is a substance which releases/absorbs sufficient energy at phase transition to provide useful heat or cooling. Generally the transition will be from one of the first two fundamental states of matter - solid and liquid - to the other. The phase transition may also be between non-classical states of matter, such as the conformity of crystals, where the material goes from conforming to one crystalline structure to conforming to another, which may be a higher or lower energy state.

<span class="mw-page-title-main">Ice pack</span> Filled bag designed to be frozen

An ice pack or gel pack is a portable bag filled with water, refrigerant gel, or liquid, meant to provide cooling. They can be divided into the reusable type, which works as a thermal mass and requires freezing, or the instant type, which cools itself down using chemicals but can only be used once. The instant type is generally limited to medical use as a cold compress to alleviate the pain of minor injuries, while the reusable type is both used as a cold compress and to keep food cool in portable coolers or in insulated shipping containers to keep products cool during transport.

<span class="mw-page-title-main">Fractional crystallization (chemistry)</span> Method for refining substances based on differences in their solubility

In chemistry, fractional crystallization is a stage-wise separation technique that relies on the liquid-solid phase change. It fractionates via differences in crystallization temperature and enables the purification of multi-component mixtures, as long as none of the constituents can act as solvents to the others. Due to the high selectivity of the solid – liquid equilibrium, very high purities can be achieved for the selected component.

<span class="mw-page-title-main">Thermodynamic databases for pure substances</span> Thermodynamic properties list

Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa, or 100 kPa. Both of these definitions for the standard condition for pressure are in use.

<span class="mw-page-title-main">Vapor quality</span> Mass fraction of a saturated mixture which is vapor

In thermodynamics, vapor quality is the mass fraction in a saturated mixture that is vapor; in other words, saturated vapor has a "quality" of 100%, and saturated liquid has a "quality" of 0%. Vapor quality is an intensive property which can be used in conjunction with other independent intensive properties to specify the thermodynamic state of the working fluid of a thermodynamic system. It has no meaning for substances which are not saturated mixtures . Vapor quality is an important quantity during the adiabatic expansion step in various thermodynamic cycles. Working fluids can be classified by using the appearance of droplets in the vapor during the expansion step.

<span class="mw-page-title-main">Cooling bath</span> Liquid mixture used to maintain low temperatures

A cooling bath or ice bath, in laboratory chemistry practice, is a liquid mixture which is used to maintain low temperatures, typically between 13 °C and −196 °C. These low temperatures are used to collect liquids after distillation, to remove solvents using a rotary evaporator, or to perform a chemical reaction below room temperature.

<span class="mw-page-title-main">Enthalpy of fusion</span> Enthalpy change when a substance melts

In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.

References

  1. Parker, Matthew T. (7 March 2019). Humble Pi. Riverhead Books. p. 91.
  2. "Farenheit [sic] Scale". Boundless.
  3. United States. Army. Ordnance Dept (1862). Theodore Thaddeus Sobieski Laidley (ed.). The Ordnance Manual for the Use of the Officers of the United States Army (3rd ed.). J.B. Lippincott & Company. pp.  462.
  4. 1 2 Walker, Richard (1788). "Experiments on the Production of Artificial Cold. By Mr. Richard Walker, Apothecary to the Radcliffe Infirmary at Oxford. In a Letter to Henry Cavendish, Esq. F.R.S. and A.S." Philosophical Transactions of the Royal Society of London. 78: 395–402. doi:10.1098/rstl.1788.0027.
  5. Duncan Stacey (1986). A History of Refrigeration Technology in the West Coast Fishing Industry (PDF). Microfiche Report Series 252. Environment Canada - Parks. pp. 1–2. Retrieved 17 May 2024.
  6. Enthalpy of solution of analytes, CRC
  7. Gray, S. (1828). The operative chemist. London: Hurst, Chance. Page 166.
  8. Walker, R. and Wall, M. (1795). Observations on the Best Methods of Producing Artificial Cold. By Mr. Richard Walker. Communicated by Martin Wall, M. D. F. R. S. Philosophical Transactions of the Royal Society of London, 85(0), pp.270-289.