Propylene glycol

Last updated
Propylene glycol [1]
Propylene glycol chemical structure.png
ball-and-stick model PropyleneGlycol-stickAndBall.png
ball-and-stick model
Space-filling model PropyleneGlycol-spaceFill.png
Space-filling model
Names
Preferred IUPAC name
Propane-1,2-diol
Other names
  • Propylene glycol
  • α-Propylene glycol
  • 1,2-Propanediol
  • 1,2-Dihydroxypropane
  • Methyl ethyl glycol
  • Methylethylene glycol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.307 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-338-0
E number E1520 (additional chemicals)
KEGG
PubChem CID
RTECS number
  • TY6300000
UNII
  • InChI=1S/C3H8O2/c1-3(5)2-4/h3-5H,2H2,1H3 Yes check.svgY
    Key: DNIAPMSPPWPWGF-UHFFFAOYSA-N Yes check.svgY
  • CC(O)CO
Properties
C3H8O2
Molar mass 76.095 g·mol−1
Appearancecolourless liquid
Odor odorless
Density 1.036 g/cm3
Melting point −59 °C (−74 °F; 214 K)
Boiling point 188.2 °C (370.8 °F; 461.3 K)
Miscible
Solubility in ethanol Miscible
Solubility in diethyl ether Miscible
Solubility in acetone Miscible
Solubility in chloroform Miscible
log P -1.34 [2]
Vapor pressure 10.66 Pa (20 °C)
Thermal conductivity 0.34 W/m·K (50% H2O @ 90 °C (194 °F))
Viscosity 0.042 Pa·s
Thermochemistry
189.9 J/(mol·K) [3]
Pharmacology
QA16QA01 ( WHO )
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
1
0
Related compounds
Related glycols
Ethylene glycol, 1,3-propanediol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Propylene glycol (IUPAC name: propane-1,2-diol) is a viscous, colorless liquid. It is almost odorless and has a faintly sweet taste. Its chemical formula is CH3CH(OH)CH2OH. As it contains two alcohol groups, it is classified as a diol. An aliphatic diol may also be called a glycol. It is miscible with a broad range of solvents, including water, acetone, and chloroform. In general, glycols [5] are non-irritating and have very low volatility. [6]

Contents

For certain uses as a food additive, propylene glycol is considered as GRAS by the US Food and Drug Administration, and is approved for food manufacturing. [7] In the European Union, it has E-number E1520 for food applications. For cosmetics and pharmacology, the number is E490. Propylene glycol is also present in propylene glycol alginate, which is known as E405.

Propylene glycol is approved and used as a vehicle for topical, oral, and some intravenous pharmaceutical preparations in the US and Europe.

Structure

The compound is sometimes called (alpha) α-propylene glycol to distinguish it from the isomer propane-1,3-diol, known as (beta) β-propylene glycol. Propylene glycol is chiral. Commercial processes typically use the racemate. The S-isomer is produced by biotechnological routes.

Production

Industrial

Industrially, propylene glycol is mainly produced from propylene oxide (for food-grade use). According to a 2018 source, 2.16 M tonnes are produced annually. [6] Manufacturers use either non-catalytic high-temperature process at 200 °C (392 °F) to 220 °C (428 °F), or a catalytic method, which proceeds at 150 °C (302 °F) to 180 °C (356 °F) in the presence of ion exchange resin or a small amount of sulfuric acid or alkali. [8]

1,2-Propandiol Synthesis V1.svg

Final products contain 20% propylene glycol, 1.5% of dipropylene glycol, and small amounts of other polypropylene glycols. [9] Further purification produces finished industrial grade or USP/JP/EP/BP grade propylene glycol that is typically 99.5% or greater. Use of USP (US Pharmacopoeia) propylene glycol can reduce the risk of Abbreviated New Drug Application (ANDA) rejection. [10]

Propylene glycol can also be obtained from glycerol, a byproduct from the production of biodiesel. [6] This starting material is usually reserved for industrial use because of the noticeable odor and taste that accompanies the final product.

Laboratory

(S)-Propanediol is synthesized via fermentation methods. Lactic acid and lactaldehyde are common intermediates. Dihydroxyacetone phosphate, one of the two products of breakdown (glycolysis) of fructose 1,6-bisphosphate, is a precursor to methylglyoxal. This conversion is the basis of a potential biotechnological route to the commodity chemical 1,2-propanediol. Three-carbon deoxysugars are also precursor to the 1,2-diol. [6]

A small-scale, nonbiological route from D-mannitol is illustrated in the following scheme: [11]

(s)-Propanediol from D-Mannitol.png

Applications

Polymers

Forty-five percent of propylene glycol produced is used as a chemical feedstock for the production of unsaturated polyester resins. In this regard, propylene glycol reacts with a mixture of unsaturated maleic anhydride and isophthalic acid to give a copolymer. This partially unsaturated polymer undergoes further crosslinking to yield thermoset plastics. Related to this application, propylene glycol reacts with propylene oxide to give oligomers and polymers that are used to produce polyurethanes. [6] Propylene glycol is used in water-based acrylic architectural paints to extend dry time which it accomplishes by preventing the surface from drying due to its slower evaporation rate compared to water.

Food and drug

In regulated amounts, propylene glycol is designated as safe for food manufacturing as an anticaking agent, emulsifier, flavor agent, humectant, texturizer, stabilizer, solvent, antioxidant, antimicrobial agent, and thickener. [7] [12] [13]

As regulated by the US FDA for substances deemed as GRAS, propylene glycol is "not subject to premarket review and approval by FDA because it is generally recognized, by qualified experts, to be safe under the intended conditions of use." [12] The scientific panel evaluating propylene glycol for food manufacturing defined its conclusion as: "There is no evidence in the available information on [propylene glycol] that demonstrates, or suggests reasonable grounds to suspect, a hazard to the public when they are used at levels that are now current or might reasonably be expected in the future." [12]

The FDA law defined maximum limits for the use of propylene glycol in various food categories under good manufacturing practices: [7]

The European Food Safety Authority authorizes propylene glycol for use in food manufacturing, establishing a safe daily intake of 25 mg per kg of body weight. [14] Specifically for ice cream or ice milk products, Health Canada permits use of propylene glycol mono fatty acid esters as an emulsifier and stabilizer at a maximum level of use of 0.35% of the ice cream made from the ingredients mix. [15]

Propylene glycol is used in a variety of other edible items, such as baked goods, desserts, prepared meals, flavoring mixes, candy, popcorn, whipped dairy products, and soda. [16] It is also used in beer to stabilize the foam. [17]

Vaporizers used for delivery of pharmaceuticals or personal-care products often include propylene glycol among the ingredients. [6] In alcohol-based hand sanitizers, it is used as a humectant to prevent the skin from drying. [18] Propylene glycol is used as a solvent in many pharmaceuticals, including oral, injectable, and topical formulations. Many pharmaceutical drugs which are insoluble in water utilize propylene glycol as a solvent and carrier; benzodiazepine tablets are one example. [19] Propylene glycol is also used as a solvent and carrier for many pharmaceutical capsule preparations. Additionally, certain formulations of artificial tears use propylene glycol as an ingredient. [20]

Propylene glycol is commonly used to de-ice aircraft. Deicing a 737 (8407234815).jpg
Propylene glycol is commonly used to de-ice aircraft.

Antifreeze

The freezing point of water is depressed when mixed with propylene glycol. It is used as aircraft de-icing and anti-icing fluid. A 50% water-diluted and heated solution is used for removal of icing accretions from the fuselages of commercial aircraft on the ground (de-icing), and 100% undiluted cold solution is used only on wings and tail surfaces of an aircraft in order to prevent ice accretion from forming during a specific period of time before takeoff (anti-icing). Normally, such time-frame is limited to 15–90 minutes, depending on the severity of snowfall and outside air temperature. [6] [21] Water-propylene glycol mixtures dyed pink to indicate the mixture is relatively nontoxic are sold under the name of RV or marine antifreeze. Propylene glycol is frequently used as a substitute for ethylene glycol in low toxicity, environmentally friendly automotive antifreeze. It is also used to winterize the plumbing systems in vacant structures. [22] The eutectic composition/temperature is 60:40 propylene glycol:water/−60 °C. [23] [24] The −50 °F/−45 °C commercial product is, however, water rich; a typical formulation is 40:60. [25]

Electronic cigarettes liquid

Propylene glycol, vegetable glycerin, [26] or a mixture of both, are the main ingredients in e-liquid used in electronic cigarettes. They are aerosolized to resemble smoke and serve as carriers for substances such as nicotine and flavorants. [27]

Miscellaneous applications

Safety in humans

When used in average quantities, propylene glycol has no measurable effect on development and/or reproduction on animals and probably does not adversely affect human development or reproduction without active use. [34] The safety of electronic cigarettes—which utilize propylene glycol-based preparations of nicotine or THC and other cannabinoids—is the subject of much controversy. [35] [36] [37] Vitamin E acetate has also been identified in this controversy. [38]

Oral administration

The acute oral toxicity of propylene glycol is very low, and large quantities are required to cause perceptible health effects in humans; [12] in fact, the toxicity of propylene glycol is one third that of ethanol. [39] Propylene glycol is metabolized in the human body into pyruvic acid (a normal part of the glucose-metabolism process, readily converted to energy), acetic acid (handled by ethanol-metabolism), lactic acid (a normal acid generally abundant during digestion), [40] and propionaldehyde (a potentially hazardous substance). [41] [42] [43] According to the Dow Chemical Company, the LD50 (dose that kills 50% of the test population) for rats is 20 g/kg (oral/rat). [44] [45]

Toxicity generally occurs at plasma concentrations over 4 g/L, which requires extremely high intake over a relatively short period of time, or when used as a vehicle for drugs or vitamins given intravenously or orally in large bolus doses. [46] It would be nearly impossible to reach toxic levels by consuming foods or supplements, which contain at most 1 g/kg of PG, except for alcoholic beverages in the US which are allowed 5 percent = 50 g/kg. [7] [12] Cases of propylene glycol poisoning are usually related to either inappropriate intravenous administration or accidental ingestion of large quantities by children. [47]

The potential for long-term oral toxicity is also low. [48] In a National Toxicology Program continuous breeding study, no effects on fertility were observed in male or female mice that received propylene glycol in drinking water at doses up to 10100 mg/kg bw/day. No effects on fertility were seen in either the first or second generation of treated mice. [34] In a 2-year study, 12 rats were provided with feed containing as much as 5% propylene glycol, and showed no apparent ill effects. [49]

Skin and eye contact

Propylene glycol is often used in electronic cigarettes. E-Cigarette-Electronic Cigarette-E-Cigs-E-Liquid-Vaping-Cloud Chasing (16348040092).jpg
Propylene glycol is often used in electronic cigarettes.

Propylene glycol may be non-irritating to the skin, see section Allergic reaction below for details on allergic reactions. [50] Undiluted propylene glycol is minimally irritating to the eye, producing slight transient conjunctivitis; the eye recovers after the exposure is removed.

A 2018 human volunteer study found that 10 male and female subjects undergoing 4 hours exposures to concentrations of up to 442 mg/m3 and 30 minutes exposures to concentrations of up to 871 mg/m3 in combination with moderate exercise did not show pulmonary function deficits, or signs of ocular irritation, with only slight symptoms of respiratory irritation reported. [51]

Propylene glycol has not caused sensitization or carcinogenicity in laboratory animal studies, nor has it demonstrated genotoxic potential. [52] [53]

Inhalation

Inhalation of propylene glycol vapors appears to present no significant hazard in ordinary applications. [54] Due to the lack of chronic inhalation data, it is recommended that propylene glycol not be used in inhalation applications such as theatrical productions, or antifreeze solutions for emergency eye wash stations. [55] Recently, propylene glycol (commonly alongside glycerol) has been included as a carrier for nicotine and other additives in e-cigarette liquids, the use of which presents a novel form of exposure. The potential hazards of chronic inhalation of propylene glycol or the latter substance as a whole are as-yet unknown. [56]

According to a 2010 study, the concentrations of PGEs (counted as the sum of propylene glycol and glycol ethers) in indoor air, particularly bedroom air, has been linked to increased risk of developing numerous respiratory and immune disorders in children, including asthma, hay fever, eczema, and allergies, with increased risk ranging from 50% to 180%. This concentration has been linked to use of water-based paints and water-based system cleansers. However, the study authors write that glycol ethers and not propylene glycol are the likely culprit. [57] [58] [59]

Intravenous administration

Studies with intravenously administered propylene glycol have resulted in LD50 values in rats and rabbits of 7 mL/kg BW. [60] Ruddick (1972) also summarized intramuscular LD50 data for rat as 13–20 mL/kg BW, and 6 mL/kg BW for the rabbit. Adverse effects to intravenous administration of drugs that use propylene glycol as an excipient have been seen in a number of people, particularly with large bolus dosages. Responses may include CNS depression, "hypotension, bradycardia, QRS and T abnormalities on the ECG, arrhythmia, cardiac arrhythmias, seizures, agitation, serum hyperosmolality, lactic acidosis, and haemolysis". [61] A high percentage (12–42%) of directly-injected propylene glycol is eliminated or secreted in urine unaltered depending on dosage, with the remainder appearing in its glucuronide-form. The speed of renal filtration decreases as dosage increases, [62] which may be due to propylene glycol's mild anesthetic / CNS-depressant properties as an alcohol. [63] In one case, intravenous administration of propylene glycol-suspended nitroglycerin to an elderly man may have induced coma and acidosis. [64] However, no confirmed lethality from propylene glycol was reported.

Animals

Propylene glycol is an approved food additive for dog and sugar glider food under the category of animal feed and is generally recognized as safe for dogs, [65] with an LD50 of 9 mL/kg. The LD50 is higher for most laboratory animals (20 mL/kg). [66] However, it is prohibited for use in food for cats due to links to Heinz body formation and a reduced lifespan of red blood cells. [67] Heinz body formation from MPG has not been observed in dogs, cattle, or humans.

PG has been used in the dairy industry since the 1950s for cows showing signs of ketosis. The negative energy balance during the early stages of lactation can cause the animal's body to have lower glucose levels, inducing the liver to make up for this by the conversion of body fat, leading to several health conditions, e.g. displaced abomasum. [68] PG "reduces the propionate ratio of acetate to acetaminophen, while increasing conversion of ruminal PG to propionate, and aid[s] in the closure of energy deficit in cattle." [68]

Allergic reaction

Estimates on the prevalence of propylene glycol allergy range from 0.8% (10% propylene glycol in aqueous solution) to 3.5% (30% propylene glycol in aqueous solution). [69] [70] [71] The North American Contact Dermatitis Group (NACDG) data from 1996 to 2006 showed that the most common site for propylene glycol contact dermatitis was the face (25.9%), followed by a generalized or scattered pattern (23.7%). [69] Investigators believe that the incidence of allergic contact dermatitis to propylene glycol may be greater than 2% in patients with eczema or fungal infections, which are very common in countries with lesser sun exposure and lower-than-normal vitamin D balances. Therefore, propylene glycol allergy is more common in those countries. [72]

Because of its potential for allergic reactions and frequent use across a variety of topical and systemic products, propylene glycol was named the American Contact Dermatitis Society's Allergen of the Year for 2018. [73] [74] Recent publication from The Mayo Clinic reported 0.85% incidence of positive patch tests to propylene glycol (100/11,738 patients) with an overall irritant rate of 0.35% (41/11,738 patients) during a 20-year period of 1997–2016. [75] 87% of the reactions were classified as weak and 9% as strong. The positive reaction rates were 0%, 0.26%, and 1.86% for 5%, 10%, and 20% propylene glycol respectively, increasing with each concentration increase. The irritant reaction rates were 0.95%, 0.24%, and 0.5% for 5%, 10%, and 20% propylene glycol, respectively. Propylene glycol skin sensitization occurred in patients sensitive to a number of other concomitant positive allergens, most common of which were: Myroxylon pereirae resin, benzalkonium chloride, carba mix, potassium dichromate, neomycin sulfate; for positive propylene glycol reactions, the overall median of 5 and mean of 5.6 concomitant positive allergens was reported.

Environmental impacts

Propylene glycol occurs naturally, probably as the result of anaerobic catabolism of sugars in the human gut. It is degraded by vitamin B12-dependent enzymes, which convert it to propionaldehyde. [76]

Propylene glycol is expected to degrade rapidly in water from biological processes, but is not expected to be significantly influenced by hydrolysis, oxidation, volatilization, bioconcentration, or adsorption to sediment. [52] Propylene glycol is readily biodegradable under aerobic conditions in freshwater, in seawater and in soil. Therefore, propylene glycol is considered as not persistent in the environment.

Propylene glycol exhibits a low degree of toxicity toward aquatic organisms. Several guideline studies available for freshwater fish with the lowest observed lethal concentration of 96-h LC50 value of 40,613 mg/L in a study with Oncorhynchus mykiss . Similarly, the lethal concentration determined in marine fish is a 96-h LC50 of >10,000 mg/L in Scophthalmus maximus .

Although propylene glycol has low toxicity, it exerts high levels of biochemical oxygen demand (BOD) during degradation in surface waters. This process can adversely affect aquatic life by consuming oxygen needed by aquatic organisms for survival. Large quantities of dissolved oxygen (DO) in the water column are consumed when microbial populations decompose propylene glycol. [77] :2–23

Related Research Articles

<span class="mw-page-title-main">Poison</span> Substance that causes death, injury or harm to organs

A poison is any chemical substance that is harmful or lethal to living organisms. The term is used in a wide range of scientific fields and industries, where it is often specifically defined. It may also be applied colloquially or figuratively, with a broad sense.

<span class="mw-page-title-main">Ethylene glycol</span> Organic compound ethane-1,2-diol

Ethylene glycol is an organic compound with the formula (CH2OH)2. It is mainly used for two purposes: as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odorless, colorless, flammable, viscous liquid. It has a sweet taste, but is toxic in high concentrations. This molecule has been observed in outer space.

<span class="mw-page-title-main">Glycerol</span> Chemical compound widely used in food and pharmaceuticals

Glycerol is a simple triol compound. It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in lipids known as glycerides. It is also widely used as a sweetener in the food industry and as a humectant in pharmaceutical formulations. Because of its three hydroxyl groups, glycerol is miscible with water and is hygroscopic in nature.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol may also be called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified. They are used as protecting groups of carbonyl groups, making them essential in synthesis of organic chemistry.

An antifreeze is an additive which lowers the freezing point of a water-based liquid. An antifreeze mixture is used to achieve freezing-point depression for cold environments. Common antifreezes also increase the boiling point of the liquid, allowing higher coolant temperature. However, all common antifreeze additives also have lower heat capacities than water, and do reduce water's ability to act as a coolant when added to it.

<span class="mw-page-title-main">Propylene oxide</span> Chemical compound

Propylene oxide is an acutely toxic and carcinogenic organic compound with the molecular formula C3H6O. This colourless volatile liquid with an odour similar to ether, is produced on a large scale industrially. Its major application is its use for the production of polyether polyols for use in making polyurethane plastics. It is a chiral epoxide, although it is commonly used as a racemic mixture.

A humectant is a hygroscopic (water-absorbing) substance used to keep things moist. They are used in many products, including food, cosmetics, medicines and pesticides. When used as a food additive, a humectant has the effect of keeping moisture in the food. Humectants are sometimes used as a component of antistatic coatings for plastics.

<span class="mw-page-title-main">1,4-Butanediol</span> One of four stable isomers of butanediol

1,4-Butanediol, also called Butane-1,4-diol (other names include 1,4-B, BD, BDO and 1,4-BD), is a primary alcohol and an organic compound with the formula HOCH2CH2CH2CH2OH. It is a colorless viscous liquid first synthesized in 1890 via acidic hydrolysis of N,N'-dinitro-1,4-butanediamine by Dutch chemist Pieter Johannes Dekkers, who called it "tetramethylene glycol".

<span class="mw-page-title-main">Benzyl alcohol</span> Aromatic alcohol

Benzyl alcohol (also known as α-cresol) is an aromatic alcohol with the formula C6H5CH2OH. The benzyl group is often abbreviated "Bn" (not to be confused with "Bz" which is used for benzoyl), thus benzyl alcohol is denoted as BnOH. Benzyl alcohol is a colorless liquid with a mild pleasant aromatic odor. It is useful as a solvent for its polarity, low toxicity, and low vapor pressure. Benzyl alcohol has moderate solubility in water (4 g/100 mL) and is miscible in alcohols and diethyl ether. The anion produced by deprotonation of the alcohol group is known as benzylate or benzyloxide.

Toxication, toxification or toxicity exaltation is the conversion of a chemical compound into a more toxic form in living organisms or in substrates such as soil or water. The conversion can be caused by enzymatic metabolism in the organisms, as well as by abiotic chemical reactions. While the parent drug is usually less active, both the parent drug and its metabolite can be chemically active and cause toxicity, leading to mutagenesis, teratogenesis, and carcinogenesis. Different classes of enzymes, such as P450 monooxygenases, epoxide hydrolase, or acetyltransferases can catalyze the process in the cell, mostly in the liver.

<span class="mw-page-title-main">Acetone</span> Organic compound ((CH3)2CO); simplest ketone

Acetone is an organic compound with the formula (CH3)2CO. It is the simplest and smallest ketone. It is a colorless, highly volatile, and flammable liquid with a characteristic pungent odour, very reminiscent of the smell of pear drops.

<span class="mw-page-title-main">2-Butoxyethanol</span> Chemical compound

2-Butoxyethanol is an organic compound with the chemical formula BuOC2H4OH. This colorless liquid has a sweet, ether-like odor, as it derives from the family of glycol ethers, and is a butyl ether of ethylene glycol. As a relatively nonvolatile, inexpensive solvent, it is used in many domestic and industrial products because of its properties as a surfactant. It is a known respiratory irritant and can be acutely toxic, but animal studies did not find it to be mutagenic, and no studies suggest it is a human carcinogen. A study of 13 classroom air contaminants conducted in Portugal reported a statistically significant association with increased rates of nasal obstruction and a positive association below the level of statistical significance with a higher risk of obese asthma and increased body mass index.

<span class="mw-page-title-main">Diethylene glycol</span> Chemical compound

Diethylene glycol (DEG) is an organic compound with the formula (HOCH2CH2)2O. It is a colorless, practically odorless, and hygroscopic liquid with a sweetish taste. It is a four carbon dimer of ethylene glycol. It is miscible in water, alcohol, ether, acetone, and ethylene glycol. DEG is a widely used solvent. It can be a normal ingredient in various consumer products, and it can be a contaminant. DEG has also been misused to sweeten wine and beer, and to viscosify oral and topical pharmaceutical products. Its use has resulted in many epidemics of poisoning since the early 20th century.

Glycol ethers are a class of chemical compounds consisting of alkyl ethers that are based on glycols such as ethylene glycol or propylene glycol. They are commonly used as solvents in paints and cleaners. They have good solvent properties while having higher boiling points than the lower-molecular-weight ethers and alcohols.

<span class="mw-page-title-main">Propylene glycol dinitrate</span> Chemical compound

Propylene glycol dinitrate (PGDN, 1,2-propylene glycol dinitrate, or 1,2-propanediol dinitrate) is an organic chemical, an ester of nitric acid and propylene glycol. It is structurally similar to nitroglycerin, except that it has one fewer nitrate group. It is a characteristically and unpleasantly smelling colorless liquid, which decomposes at 121 °C, below its boiling point. It is flammable and explosive. It is shock-sensitive and burns with a clean flame producing water vapor, carbon monoxide, and nitrogen gas.

1,3-Propanediol is the organic compound with the formula CH2(CH2OH)2. This 3-carbon diol is a colorless viscous liquid that is miscible with water.

Ethylene glycol poisoning is poisoning caused by drinking ethylene glycol. Early symptoms include intoxication, vomiting and abdominal pain. Later symptoms may include a decreased level of consciousness, headache, and seizures. Long term outcomes may include kidney failure and brain damage. Toxicity and death may occur after drinking even in a small amount as ethylene glycol is more toxic than other diols.

<span class="mw-page-title-main">3-MCPD</span> Chemical compound

3-MCPD (3-monochloropropane-1,2-diol or 3-chloropropane-1,2-diol) is an organic chemical compound with the formula HOCH2CH(OH)CH2Cl. It is a colorless liquid. The compound has attracted notoreity as the most common member of chemical food contaminants known as chloropropanols. It is suspected to be carcinogenic in humans.

<span class="mw-page-title-main">1,2-Butanediol</span> Chemical compound

1,2-Butanediol is the organic compound with the formula HOCH2(HO)CHCH2CH3. It is classified as a vic-diol (glycol). It is chiral, although typically it is encountered as the racemic mixture. It is a colorless liquid.

<span class="mw-page-title-main">Composition of electronic cigarette aerosol</span>

The chemical composition of the electronic cigarette aerosol varies across and within manufacturers. Limited data exists regarding their chemistry. However, researchers at Johns Hopkins University analyzed the vape clouds of popular brands such as Juul and Vuse, and found "nearly 2,000 chemicals, the vast majority of which are unidentified."

References

  1. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals . Merck & Co. 1989. ISBN   978-0911910285.
  2. "Propylene Glycol_msds".
  3. Zaripov, Z.I. (1982). Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000 a.e.m.
  4. "Propylene Glycol - Cameo Chemicals". NOAA Office of Response and Restoration. NOAA . Retrieved 3 October 2018.
  5. Zapka, Maskrey (2016). Hawaii Energy and Environmental Technologies (HEET) Initiative.
  6. 1 2 3 4 5 6 7 Sullivan, Carl J.; Kuenz, Anja; Vorlop, Klaus-Dieter (2018). "Propanediols". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_163.pub2. ISBN   978-3527306732.
  7. 1 2 3 4 "Propylene glycol, Subpart B - Listing of Specific Substances Affirmed as GRAS, Sec. 184.1666 (original 25 June 1982)". Title 21, Code of Federal Regulations, US Food and Drug Administration. 30 August 2024. Retrieved 20 November 2024.
  8. Chauvel, Alain; Lefebvre, Gilles (1989). Petrochemical Processes. Vol. 2: Major Oxygenated, Chlorinated and Nitrated Derivatives. Editions Technip. p. 26. ISBN   9782710805632.
  9. "1,2-propanediol: chemical product info at CHEMINDUSTRY.RU" . Retrieved 3 October 2018.
  10. "Propylene Glycol USP". Berryman Chemical. 2020-07-20. Archived from the original on 2020-07-28. Retrieved 2020-07-28.
  11. Hanessian, Stephen (1983). Total Synthesis of Natural Products: The 'Chiron' Approach. Pergamon press. p. 41. ISBN   978-0080307152.
  12. 1 2 3 4 5 "Propylene glycol". Select Committee on GRAS Substances, US Food and Drug Administration. 31 July 2020. Retrieved 5 December 2024.
  13. "Propylene glycol: Substances added to food". US Food and Drug Administration. 29 October 2024. Retrieved 5 December 2024.
  14. EFSA Panel on Food Additives and Nutrient Sources added to Food (2018). "Re-evaluation of propane-1,2-diol (E 1520)as a food additive". EFSA Journal. 16 (4): 5235. doi:10.2903/j.efsa.2018.5235. PMC   7009459 . Retrieved 6 December 2024.
  15. "Modification to the List of permitted emulsifying, gelling, stabilizing or thickening agents to enable the use of propylene glycol mono fatty acid esters as an emulsifier and stabilizer in ice milk mix". Health Canada, Government of Canada. 13 February 2013. Retrieved 6 December 2024.
  16. Terrell, Casey (18 May 2021). "What Is Propylene Glycol, and What Does It Do in Our Food?". Food Insight. Retrieved 6 December 2024.
  17. G. Jackson, R. T. Roberts and T. Wainwright (January 1980). "Mechanism of Beer Foam Stabilization by Propylene Glycol Alginate". Journal of the Institute of Brewing. 86 (1): 34–37. doi:10.1002/j.2050-0416.1980.tb03953.x.
  18. Lohrey, Jackie. "Ingredients in Hand Sanitizer". LIVESTRONG.COM. Retrieved 2018-06-11.
  19. Janusz Szajewski, MD, Warsaw Poison Control Centre (August 1991). "Propylene glycol (PIM 443)". IPCS INChem. Retrieved July 2, 2009.
  20. Pucker AD, Ng SM, Nichols JJ (2016). "Over the counter (OTC) artificial tear drops for dry eye syndrome". Cochrane Database Syst Rev. 2016 (2): CD009729. doi:10.1002/14651858.CD009729.pub2. PMC   5045033 . PMID   26905373.
  21. "What's That Stuff? Aircraft Deicers". Chemical & Engineering News. American Chemical Society. 2000-07-10. Retrieved 2013-06-21.
  22. "5 Ways to Winterize a Vacant Home". wikiHow. 2012-06-11. Retrieved 2014-02-27.
  23. "Properties of Some Particular Solutions" (PDF). Portal del DMT. Retrieved 2014-02-27.
  24. Salnick, Robert (2010-08-04). "Windborne in Puget Sound: Why does a holding plate work?". Windborneinpugetsound.blogspot.com. Retrieved 2014-02-27.
  25. "Material Safety Data Sheet: Winter Care RV Antifreeze" (PDF). Chemical Specialties. Retrieved 2014-02-27.
  26. Agoons, Dayawa D.; Agoons, Batakeh B.; Emmanuel, Kelechi E.; Matawalle, Firdausi A.; Cunningham, Jessica M. (2021-01-01). "Association between electronic cigarette use and fragility fractures among US adults". American Journal of Medicine Open. 1–6: 100002. doi: 10.1016/j.ajmo.2021.100002 . ISSN   2667-0364. PMC   11256257 . PMID   39036626. S2CID   244502249.
  27. Varlet, Vincent; et al. (2015). "Toxicity Assessment of Refill Liquids for Electronic Cigarettes". International Journal of Environmental Research and Public Health. 12 (5): 4796–4815. doi: 10.3390/ijerph120504796 . ISSN   1660-4601. PMC   4454939 . PMID   25941845.
  28. Bradley, Jean-Claude; Abraham, Michael H; Acree, William E; Lang, Andrew (2015). "Predicting Abraham model solvent coefficients". Chemistry Central Journal. 9 (1): 12. doi: 10.1186/s13065-015-0085-4 . ISSN   1752-153X. PMC   4369285 . PMID   25798192.
  29. Nielsen, Nicolaj (2004). "Propylene glycol for dairy cows". Animal Feed Science and Technology. 115 (3–4): 191–213. doi:10.1016/j.anifeedsci.2004.03.008.
  30. Fiume, Monice M.; Bergfeld, Wilma F.; Belsito, Donald V.; et al. (September 2012). "Safety assessment of propylene glycol, tripropylene glycol, and PPGs as used in cosmetics". International Journal of Toxicology. 31 (5 Suppl): 245S–60S. doi: 10.1177/1091581812461381 . ISSN   1092-874X. PMID   23064775. S2CID   24754435.
  31. Rubin, Benjamin E. R.; Czekanski-Moir, Jesse E.; Wray, Brian D.; Moreau, Corrie S. (2013-03-13). "DNA preservation: a test of commonly used preservatives for insects". Invertebrate Systematics. 27 (1): 81–86. doi:10.1071/IS12067. ISSN   1447-2600. S2CID   4820463.
  32. Nevada Film Office (February 19, 2019). "Production Notes: Haze Machines". nevadafilm.com. Retrieved November 1, 2019.
  33. Daniel, Brea (July 15, 2016). "Atmosphere: Hazers, Fazers, Smoke and Fog 101 by Daniel Brea". provideocoalition.com. Archived from the original on 2016-07-19. Retrieved November 1, 2019.
  34. 1 2 National Toxicology Program NIEHS (2004), NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Propylene Glycol, NIH Publication No. 04-4482
  35. CDC (March 11, 2019). "Electronic Cigarettes".
  36. Havelka, Jacqueline (April 27, 2017). "Is Vaping Safe?". leafly.com.
  37. Peki, Winston (May 5, 2019). "Are Vaporizers Safe?". herbonaut.com.
  38. "Outbreak of Lung Injury Associated with the Use of E-Cigarette, or Vaping, Products". Centers for Disease Control and Prevention. 2020.
  39. Lehman A, Newman H (1937). "Propylene glycol: Rate of metabolism absorption, and excretion, with a method for estimation in body fluids". J Pharmacol Exp Ther. 60: 312–322.
  40. Hamilton, D. J. (1890). "Gastric Dyspepsia". The Lancet. 2 (3493): 306. doi:10.1016/S0140-6736(02)17110-8.
  41. "Material Safety Data Sheet Propionaldehyde MSDS". ScienceLab.com. 2010.
  42. Miller DN, Bazzano G; Bazzano (1965). "Propanediol metabolism and its relation to lactic acid metabolism". Ann NY Acad Sci. 119 (3): 957–973. Bibcode:1965NYASA.119..957M. doi:10.1111/j.1749-6632.1965.tb47455.x. PMID   4285478. S2CID   37769342.
  43. Ruddick JA (1972). "Toxicology, metabolism, and biochemistry of 1,2-propanediol". Toxicol Appl Pharmacol. 21 (1): 102–111. Bibcode:1972ToxAP..21..102R. doi:10.1016/0041-008X(72)90032-4. PMID   4553872.
  44. "Lethal dose table" (PDF). rocklinusd.org.
  45. Alton E. Martin and Frank H. Murphy. "GLYCOLS - PROPYLENE GLYCOLS" (PDF). Dow Chemical Company.
  46. Flanagan RJ; Braithwaite RA; Brown SS; et al. The International Programme on Chemical Safety: Basic Analytical Toxicology. WHO, 1995.
  47. National Library of Medicine; Propylene glycol is used in antifreeze. Human Toxicity Excerpts: CAS Registry Number: 57-55-6 (1,2-Propylene Glycol). Selected toxicity information from HSDB. 2005.
  48. "Select Committee on GRAS Substances Opinion: Propylene Glycol and Propylene Glycol Monostearate". Select Committee on GRAS Substances, US Food and Drug Administration. 29 September 2015. Retrieved 5 December 2024.
  49. Gaunt, I. F.; Carpanini, F. M. B.; Grasso, P.; Lansdown, A. B. G. (1972). "Long-term toxicity of propylene glycol in rats". Food and Cosmetics Toxicology . 10 (2): 151–162. doi:10.1016/S0015-6264(72)80193-7. PMID   5072816.
  50. Addendum to the Toxicological Profile for Propylene Glycol, Agency for Toxic Substances and Disease Registry, 2008, p. 7
  51. Dalton P; Soreth B; Maute C; et al. (2018). "Lack of respiratory and ocular effects following acute propylene glycol exposure in healthy humans". Inhal. Toxicol. 30 (3): 124–132. Bibcode:2018InhTx..30..124D. doi:10.1080/08958378.2018.1470207. PMID   29764241. S2CID   21711274.
  52. 1 2 "1,2-Dihydroxypropane: SIDS Initial Assessment Report for 11th SIAM" (PDF). UNEP Publications. January 23–26, 2001. pp. 15–22. Archived from the original (PDF) on 2009-02-19. Retrieved 2008-01-08.
  53. Title 21, U.S. Code of Federal Regulations. 1999.
  54. Robertson, OH; Loosli, CG; Puck, TT; et al. (September 1947). "Tests for the chronic toxicity of propylene glycol and triethylene glycol on monkeys and rats by vapor inhalation and oral administration". Journal of Pharmacology and Experimental Therapeutics. 91 (1): 52–76. PMID   20265820. air containing these vapors in amounts up to the saturation point is completely harmless
  55. A Guide to Glycols, Dow, page 36
  56. "Vaping vs Smoking: Is the Former Really a Healthier Alternative?". 29 June 2020.
  57. "Everyday Substances Increase Risk of Allergies in Children, Swedish Study Reveals". ScienceDaily. Oct 19, 2010.
  58. "Chemical Compounds Emitted From Common Household Paints and Cleaners Increase Risks of Asthma and Allergies in Children". Harvard. Archived from the original on 17 February 2011. Retrieved 3 October 2018.
  59. Choi, Hyunok; Norbert Schmidbauer; Jan Sundell; et al. (2010-10-18). Hartl, Dominik (ed.). "Common Household Chemicals and the Allergy Risks in Pre-School Age Children". PLOS ONE. 5 (10): e13423. Bibcode:2010PLoSO...513423C. doi: 10.1371/journal.pone.0013423 . PMC   2956675 . PMID   20976153.
  60. Ruddick (1972). "Toxicology, metabolism, and biochemistry of 1,2-propanediol". Toxicol Appl Pharmacol. 21 (1): 102–111. Bibcode:1972ToxAP..21..102R. doi:10.1016/0041-008X(72)90032-4. PMID   4553872.
  61. Szajewski, Janusz. "Propylene Glycol (PIM 443)." 1991. 2 June 2010 http://www.inchem.org/documents/pims/chemical/pim443.htm#SectionTitle:9.1%20%20Acute%20poisoning
  62. Speth, P. A. J.; Vree, T. B.; Neilen, N. F. M.; et al. (1987). "Propylene Glycol Pharmacokinetics and Effects after Intravenous Infusion in Humans". Therapeutic Drug Monitoring. 9 (3): 255–258. doi:10.1097/00007691-198709000-00001. PMID   3672566. S2CID   23317790.
  63. Seidenfeld, M. A.; Hanzlik, P. J. (1932). "The general properties, actions, and toxicity of propylene glycol". J Pharmacol Exp Ther . 44: 109–121.
  64. Demey, H.; Daelemans, R.; De Broe, M.E.; Bossaert, L. (1984). "Propylene glycol intoxication due to intravenous nitroglycerin". The Lancet. 323 (8390): 1360. doi:10.1016/S0140-6736(84)91860-9. ISSN   0140-6736. PMID   6145062. S2CID   36606490.
  65. FDA. "Subchapter E - Animal Drugs, Feeds, and Related Products; § 582.1666. Propylene glycol." Code of Federal Regulations, 21 CFR 582.1666
  66. Peterson, Michael; Talcott, Patricia A. (2006). Small animal toxicology. St. Louis: Saunders Elsevier. p. 997. ISBN   978-0-7216-0639-2.
  67. "Propylene glycol and cats" (PDF). Archived from the original (PDF) on 2015-02-27. Retrieved 2013-06-21.
  68. 1 2 Using and Side-effects of Propylene Glycol in Animals, Bulent Elitok, Journal of Reproductive Health and Contraception, April 23, 2018.
  69. 1 2 Warshaw, Erin M.; Botto, Nina C.; Maibach, Howard I.; et al. (January 2009). "Positive patch-test reactions to propylene glycol: a retrospective cross-sectional analysis from the North American Contact Dermatitis Group, 1996 to 2006". Dermatitis: Contact, Atopic, Occupational, Drug. 20 (1): 14–20. doi:10.2310/6620.2008.08039. ISSN   2162-5220. PMID   19321115. S2CID   959002.
  70. Lessmann, Holger; Schnuch, Axel; Geier, Johannes; Uter, Wolfgang (November 2005). "Skin-sensitizing and irritant properties of propylene glycol". Contact Dermatitis. 53 (5): 247–259. doi: 10.1111/j.0105-1873.2005.00693.x . ISSN   0105-1873. PMID   16283903. S2CID   13006333.
  71. Wetter, David A.; Yiannias, James A.; Prakash, Amy V.; et al. (November 2010). "Results of patch testing to personal care product allergens in a standard series and a supplemental cosmetic series: an analysis of 945 patients from the Mayo Clinic Contact Dermatitis Group, 2000-2007". Journal of the American Academy of Dermatology. 63 (5): 789–798. doi:10.1016/j.jaad.2009.11.033. ISSN   1097-6787. PMID   20643495.
  72. AMA Drug Evaluations Annual 1994, American Medical Association, Council on Drugs, 1994, p. 1224
  73. Jacob, Sharon E.; Scheman, Andrew; McGowan, Maria A. (January–February 2018). "Propylene Glycol". Dermatitis: Contact, Atopic, Occupational, Drug. 29 (1): 3–5. doi:10.1097/DER.0000000000000315. ISSN   2162-5220. PMID   29059092. S2CID   24598433.
  74. "Allergen of the year may be nearer than you think". www.mdedge.com. Retrieved 2019-04-08.
  75. Lalla SC; Nguyen H; Chaudhry H; et al. (2018). "Patch Testing to Propylene Glycol: The Mayo Clinic Experience". Dermatitis. 29 (4): 200–205. doi:10.1097/DER.0000000000000393. PMID   29923851. S2CID   49311147.
  76. Leal, Nicole A.; Havemann, Gregory D.; Bobik, Thomas A. (2003). "PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12 -dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2". Archives of Microbiology. 180 (5): 353–361. Bibcode:2003ArMic.180..353L. doi:10.1007/s00203-003-0601-0. PMID   14504694. S2CID   44010353.
  77. Environmental Impact and Benefit Assessment for the Final Effluent Limitation Guidelines and Standards for the Airport Deicing Category (Report). Washington, D.C.: U.S. Environmental Protection Agency (EPA). April 2012. EPA 821-R-12-003.