Aerosolization

Last updated

Aerosolization is the process or act of converting some physical substance into the form of particles small and light enough to be carried on the air i.e. into an aerosol. Aerosolization refers to a process of intentionally oxidatively converting and suspending particles or a composition in a moving stream of air for the purpose of delivering the oxidized particles or composition to a particular location. [1]

The term is often used in medicine to refer specifically to the production of airborne particles (e.g. tiny liquid droplets) containing infectious virus or bacteria. The infectious organism is said to be aerosolized. This can occur when an infected individual coughs, [2] sneezes [3] exhales, [4] or vomits, [5] but can also arise from flushing a toilet, [6] or disturbing dried contaminated feces. [7]

Treatment of some respiratory diseases relies on aerosolization of a liquid medication using a nebulizer, which is then breathed in for direct transport to the lungs.

In the context of chemical and biological weapons, aerosolization is a means of dispersing a chemical or biological agent in an attack. See for example "Botulinum Toxin as a Biological Weapon". [8]

Dustiness is the tendency of finely divided solids to generate aerosols from an external stimulus and can be quantified or measured [9] .

Related Research Articles

<span class="mw-page-title-main">Bioterrorism</span> Terrorism involving biological agents

Bioterrorism is terrorism involving the intentional release or dissemination of biological agents. These agents include bacteria, viruses, insects, fungi, and/or their toxins, and may be in a naturally occurring or a human-modified form, in much the same way as in biological warfare. Further, modern agribusiness is vulnerable to anti-agricultural attacks by terrorists, and such attacks can seriously damage economy as well as consumer confidence. The latter destructive activity is called agrobioterrorism and is a subtype of agro-terrorism.

<span class="mw-page-title-main">Plague (disease)</span> Disease caused by Yersinia pestis bacterium

Plague is an infectious disease caused by the bacterium Yersinia pestis. Symptoms include fever, weakness and headache. Usually this begins one to seven days after exposure. There are three forms of plague, each affecting a different part of the body and causing associated symptoms. Pneumonic plague infects the lungs, causing shortness of breath, coughing and chest pain; bubonic plague affects the lymph nodes, making them swell; and septicemic plague infects the blood and can cause tissues to turn black and die.

<span class="mw-page-title-main">Botulism</span> Human and animal disease

Botulism is a rare and potentially fatal illness caused by a toxin produced by the bacterium Clostridium botulinum. The disease begins with weakness, blurred vision, feeling tired, and trouble speaking. This may then be followed by weakness of the arms, chest muscles, and legs. Vomiting, swelling of the abdomen, and diarrhea may also occur. The disease does not usually affect consciousness or cause a fever.

<span class="mw-page-title-main">Botulinum toxin</span> Neurotoxic protein produced by Clostridium botulinum

Botulinum toxin, or botulinum neurotoxin, is a highly potent neurotoxic protein produced by the bacterium Clostridium botulinum and related species. It prevents the release of the neurotransmitter acetylcholine from axon endings at the neuromuscular junction, thus causing flaccid paralysis. The toxin causes the disease botulism. The toxin is also used commercially for medical and cosmetic purposes. Botulinum toxin is an acetylcholine release inhibitor and a neuromuscular blocking agent.

<i>Clostridium botulinum</i> Species of endospore forming bacterium

Clostridium botulinum is a gram-positive, rod-shaped, anaerobic, spore-forming, motile bacterium with the ability to produce botulinum toxin, which is a neurotoxin.

<span class="mw-page-title-main">Whooping cough</span> Human disease caused by the bacteria Bordetella pertussis

Whooping cough, also known as pertussis or the 100-day cough, is a highly contagious, vaccine-preventable bacterial disease. Initial symptoms are usually similar to those of the common cold with a runny nose, fever, and mild cough, but these are followed by two or three months of severe coughing fits. Following a fit of coughing, a high-pitched whoop sound or gasp may occur as the person breathes in. The violent coughing may last for 10 or more weeks, hence the phrase "100-day cough". The cough may be so hard that it causes vomiting, rib fractures, and fatigue. Children less than one year old may have little or no cough and instead have periods where they cannot breathe. The incubation period is usually seven to ten days. Disease may occur in those who have been vaccinated, but symptoms are typically milder.

<span class="mw-page-title-main">Nebulizer</span> Drug delivery device

In medicine, a nebulizer or nebuliser is a drug delivery device used to administer medication in the form of a mist inhaled into the lungs. Nebulizers are commonly used for the treatment of asthma, cystic fibrosis, COPD and other respiratory diseases or disorders. They use oxygen, compressed air or ultrasonic power to break up solutions and suspensions into small aerosol droplets that are inhaled from the mouthpiece of the device. An aerosol is a mixture of gas and solid or liquid particles.

In medicine, public health, and biology, transmission is the passing of a pathogen causing communicable disease from an infected host individual or group to a particular individual or group, regardless of whether the other individual was previously infected. The term strictly refers to the transmission of microorganisms directly from one individual to another by one or more of the following means:

<span class="mw-page-title-main">Autonomous detection system</span> Automated biohazard detection system

Autonomous Detection Systems (ADS), also called biohazard detection systems or autonomous pathogen detection systems, are designed to monitor air or water in an environment and to detect the presence of airborne or waterborne chemicals, toxins, pathogens, or other biological agents capable of causing human illness or death. These systems monitor air or water continuously and send real-time alerts to appropriate authorities in the event of an act of bioterrorism or biological warfare.

<span class="mw-page-title-main">Iraqi biological weapons program</span> Research and development of biological weapons in Iraq

Saddam Hussein (1937–2006) began an extensive biological weapons (BW) program in Iraq in the early 1980s, despite having signed the Biological Weapons Convention (BWC) of 1972. Details of the BW program and a chemical weapons program surfaced after the Gulf War (1990–91) during the disarmament of Iraq under the United Nations Special Commission (UNSCOM). By the end of the war, program scientists had investigated the BW potential of five bacterial strains, one fungal strain, five types of virus, and four toxins. Of these, three—anthrax, botulinum and aflatoxin—had proceeded to weaponization for deployment. Because of the UN disarmament program that followed the war, more is known today about the once-secret bioweapons program in Iraq than that of any other nation.

Microbial toxins are toxins produced by micro-organisms, including bacteria, fungi, protozoa, dinoflagellates, and viruses. Many microbial toxins promote infection and disease by directly damaging host tissues and by disabling the immune system. Endotoxins most commonly refer to the lipopolysaccharide (LPS) or lipooligosaccharide (LOS) that are in the outer plasma membrane of Gram-negative bacteria. The botulinum toxin, which is primarily produced by Clostridium botulinum and less frequently by other Clostridium species, is the most toxic substance known in the world. However, microbial toxins also have important uses in medical science and research. Currently, new methods of detecting bacterial toxins are being developed to better isolate and understand these toxins. Potential applications of toxin research include combating microbial virulence, the development of novel anticancer drugs and other medicines, and the use of toxins as tools in neurobiology and cellular biology.

<span class="mw-page-title-main">Airborne transmission</span> Disease transmission by airborne particles

Airborne transmission or aerosol transmission is transmission of an infectious disease through small particles suspended in the air. Infectious diseases capable of airborne transmission include many of considerable importance both in human and veterinary medicine. The relevant infectious agent may be viruses, bacteria, or fungi, and they may be spread through breathing, talking, coughing, sneezing, raising of dust, spraying of liquids, flushing toilets, or any activities which generate aerosol particles or droplets.

Indoor bioaerosol is bioaerosol in an indoor environment. Bioaerosols are natural or artificial particles of biological origin suspended in the air. These particles are also referred to as organic dust. Bioaerosols may consist of bacteria, fungi, viruses, microbial toxins, pollen, plant fibers, etc. Size of bioaerosol particles varies from below 1 μm to 100 μm in aerodynamic diameter; viable bioaerosol particles can be suspended in air as single cells or aggregates of microorganism as small as 1–10 μm in size. Since bioaerosols are potentially related to various human health effects and the indoor environment provides a unique exposure situation, concerns about indoor bioaerosols have increased over the last decade.

<span class="mw-page-title-main">Respiratory droplet</span> Type of particle formed by breathing

A respiratory droplet is a small aqueous droplet produced by exhalation, consisting of saliva or mucus and other matter derived from respiratory tract surfaces. Respiratory droplets are produced naturally as a result of breathing, speaking, sneezing, coughing, or vomiting, so they are always present in our breath, but speaking and coughing increase their number.

A toilet plume is the dispersal of microscopic particles as a result of flushing a toilet. Normal use of a toilet by healthy individuals is considered unlikely to be a major health risk. However this dynamic changes if an individual is fighting an illness and currently shedding out a virulent pathogen in their urine, feces or vomitus. The age old debate of Lid up or Lid Down was finally settled by Science in January 2024 proving that Toilet Plume still escapes when the lid is down. There is indirect evidence that specific pathogens such as norovirus or SARS coronavirus could potentially be spread by toilet aerosols, but as of 2015, no direct experimental studies had clearly demonstrated or refuted actual disease transmission from toilet aerosols. It has been hypothesized that dispersal of pathogens may be reduced by closing the toilet lid before flushing, and by using toilets with lower flush energy.

<span class="mw-page-title-main">Occupational dust exposure</span> Occupational hazard in agriculture, construction, forestry, and mining

Occupational dust exposure occurs when small particles are generated at the workplace through the disturbance/agitation of rock/mineral, dry grain, timber, fiber, or other material. When these small particles become suspended in the air, they can pose a risk to the health of those who breath in the contaminated air.

Vaping-associated pulmonary injury (VAPI), also known as vaping-associated lung injury (VALI) or e-cigarette, or vaping, product use associated lung injury (E/VALI), is an umbrella term, used to describe lung diseases associated with the use of vaping products that can be severe and life-threatening. Symptoms can initially mimic common pulmonary diagnoses, such as pneumonia, but sufferers typically do not respond to antibiotic therapy. Differential diagnoses have overlapping features with VAPI, including COVID-19. According to a systematic review article, "Initial case reports of vaping-related lung injury date back to 2012, but the ongoing outbreak of EVALI began in the summer of 2019." According to an article in the Radiological Society of North America news published in March 2022, EVALI cases continue to be diagnosed. “EVALI has by no means disappeared,” Dr. Kligerman said. “We continue to see numerous cases, even during the pandemic, many of which are initially misdiagnosed as COVID-19.”

An aerosol-generating procedure (AGP) is a medical or health-care procedure that a public health agency such as the World Health Organization or the United States Centers for Disease Control and Prevention (CDC) has designated as creating an increased risk of transmission of an aerosol borne contagious disease, such as COVID-19. The presumption is that the risk of transmission of the contagious disease from a patient having an AGP performed on them is higher than for a patient who is not having an AGP performed upon them. This then informs decisions on infection control, such as what personal protective equipment (PPE) is required by a healthcare worker performing the medical procedure, or what PPE healthcare workers are allowed to use.

<span class="mw-page-title-main">Source control (respiratory disease)</span> Strategy for reducing disease transmission

Source control is a strategy for reducing disease transmission by blocking respiratory secretions produced through breathing, speaking, coughing, sneezing or singing. Multiple source control techniques can be used in hospitals, but for the general public wearing personal protective equipment during epidemics or pandemics, respirators provide the greatest source control, followed by surgical masks, with cloth face masks recommended for use by the public only when there are shortages of both respirators and surgical masks.

<span class="mw-page-title-main">Transmission of COVID-19</span> Mechanisms that spread coronavirus disease 2019

The transmission of COVID-19 is the passing of coronavirus disease 2019 from person to person. COVID-19 is mainly transmitted when people breathe in air contaminated by droplets/aerosols and small airborne particles containing the virus. Infected people exhale those particles as they breathe, talk, cough, sneeze, or sing. Transmission is more likely the closer people are. However, infection can occur over longer distances, particularly indoors.

References

  1. "Kelly K. Houston Inventions, Patents and Patent Applications - Justia Patents Search". patents.justia.com.
  2. Tang, J. W.; Settles, G. S. (2008). "Coughing and Aerosols". New England Journal of Medicine. 359 (15): e19. doi: 10.1056/NEJMicm072576 . PMID   18843121.
  3. "Microbe-laden aerosols" (PDF). Microbiology Today (November 2005). Archived from the original (PDF 217 KB) on 2007-10-14.
  4. Johnson, G. R.; Morawska, L. (2009). "The Mechanism of Breath Aerosol Formation". Journal of Aerosol Medicine and Pulmonary Drug Delivery. 22 (3): 229–237. CiteSeerX   10.1.1.651.7875 . doi:10.1089/jamp.2008.0720. PMID   19415984.
  5. "Norovirus, Clinical Overview". Centers for Disease Control and Prevention (CDC). 2018-12-21.
  6. Best, E. L.; Sandoe, J. A. T.; Wilcox, M. H. (2012). "Potential for aerosolization of Clostridium difficile after flushing toilets: The role of toilet lids in reducing environmental contamination risk". Journal of Hospital Infection. 80 (1): 1–5. doi:10.1016/j.jhin.2011.08.010. PMID   22137761.
  7. "Hantavirus Pulmonary Syndrome (HPS): What You Need To Know" (PDF 1.4 MB). CDC. 2018-02-12.
  8. "Botulinum Toxin as a Biological Weapon". Center For Infectious Disease Research & Policy. Archived from the original on 2013-05-06. Retrieved 2012-05-02.
  9. The National Institute for Occupational Safety and Health (February 2024). "Quantification of Airborne Dusts From Powders" (PDF). Retrieved 9 July 2024.