Slurry ice

Last updated
Slurry ice with propylene glycol as depressant viewed through a microscope. Slurry ice under microscope.jpg
Slurry ice with propylene glycol as depressant viewed through a microscope.

Slurry ice is a phase changing refrigerant made up of millions of ice "micro-crystals" (typically 0.1 to 1 mm in diameter) formed and suspended within a solution of water and a freezing point depressant. Some compounds used in the field are salt, ethylene glycol, propylene glycol, alcohols like isobutyl and ethanol, and sugars like sucrose and glucose. Slurry ice has greater heat absorption compared to single phase refrigerants like brine, because the melting enthalpy (latent heat) of the ice is also used.

Contents

Characteristics

The small ice particle size results in greater heat transfer area than other types of ice for a given weight. It can be packed inside a container as dense as 700 kg/m3, the highest ice-packing factor among all usable industrial ice.

The spherical crystals have good flow properties, making them easy to distribute through conventional pumps and piping and over product in direct contact chilling applications, allowing them to flow into crevices and provide greater surface contact and faster cooling than other traditional forms of ice (flake, block, shell, etc.).

Its flow properties, high cooling capacity and flexibility in application make a slurry ice system a substitute for conventional ice generators and refrigeration systems, and offers improvements in energy efficiency: 70%, compared to around 45% in standard systems, lower freon consumption per ton of ice and lower operating costs.

Application fields

Slurry ice is commonly used in a wide range of air conditioning, packaging, and industrial cooling processes, supermarkets, and cooling and storage of fish, produce, poultry and other perishable products.

Fish chilling with slurry ice. Sunwell fish packing pumpable slurry ice.JPG
Fish chilling with slurry ice.

Slurry ice can boost by up to 200% the cooling efficiency of existing cooling or freezing brine systems without any major changes to the system (i.e. heat exchanger, pipes, valves), and reduce the amount of energy consumption used for pumping.

Advantages

Slurry ice is also used in direct contact cooling of products in food processing applications in water resistant shipping containers. It provides the following advantages:

Slurry ice generators

Slurry ice is generated using a unique type of ice-making technology. Conventional ice generators produce sharp edged, dry ice fragments, not the small, spherical crystals found in slurry ice. In traditional brine chiller systems, crystals forming inside the solution would block or damage the system.

Scraped surface generators

The world’s first patent for a slurry ice generator was filed by Sunwell Technologies Inc. of Canada in 1976. Sunwell Technologies Inc. introduced slurry ice under the trade name deepchill ice, in the late 1970s. Slurry ice is created through a process of forming spherical ice crystals within a liquid. The slurry ice generator is a scraped-surface vertical shell and tube heat exchanger. It consists of concentric tubes with refrigerant flowing between them and the water/freezing point depressant solution in the inner tube. The inner surface of the inner tube is wiped using a wiping mechanism which in the original Sunwell design consists of a central shaft, spring-loaded plastic blades, bearings and seals. The small ice crystals formed in the solution near the tube surface are wiped away from the surface and mixed with unfrozen water, forming the slurry. Other slurry ice generators adapted the first idea of the scraped surface wiping the surface by using an auger originally designed to create flake ice. Wipers can be also brushes or fluidized bed heat exchanger for ice crystallization. In this heat exchangers steel particles circulate with the fluid mechanically removing the crystals from the surface. At the outlet steel particles and slurry ice are separated.

Direct contact generators

An immiscible primary refrigerant evaporates to supersaturate the water and form small smooth crystals. With direct contact chilling, there is no physical boundary between the brine and the refrigerant, increasing the rate of heat transfer. However, the major disadvantage of this system is that a small amount of refrigerant stays in the brine, trapped in the crystals. This refrigerant is pumped with the slurry out of the generator and into the environment.

Supercooling generators

Pure water is supercooled in a chiller to −2°C and released through a nozzle into a storage tank. On release it undergoes a phase transition forming small ice particles within 2.5% ice fraction. In the storage tank it is separated by the difference in density between ice and water. The cold water is supercooled and released again increasing the ice fraction in the storage tank. However a small crystal in the supercooled water or a nucleation cell on the surface may act as a seed for ice crystals and block the generator.

See also

Related Research Articles

Frost Coating or deposit of ice

Frost is a thin layer of ice on a solid surface, which forms from water vapor in an above-freezing atmosphere coming in contact with a solid surface whose temperature is below freezing, and resulting in a phase change from water vapor to ice as the water vapor reaches the freezing point. In temperate climates, it most commonly appears on surfaces near the ground as fragile white crystals; in cold climates, it occurs in a greater variety of forms. The propagation of crystal formation occurs by the process of nucleation.

Refrigeration Process of moving heat from one location to another in controlled conditions

The term refrigeration means cooling a space, substance or system to lower and/or maintain its temperature below the ambient one. In other words, refrigeration is artificial (human-made) cooling. Energy in the form of heat is removed from a low-temperature reservoir and transferred to a high-temperature reservoir. The work of energy transfer is traditionally driven by mechanical means, but can also be driven by heat, magnetism, electricity, laser, or other means. Refrigeration has many applications, including household refrigerators, industrial freezers, cryogenics, and air conditioning. Heat pumps may use the heat output of the refrigeration process, and also may be designed to be reversible, but are otherwise similar to air conditioning units.

Supercooling, also known as undercooling, is the process of lowering the temperature of a liquid or a gas below its freezing point without it becoming a solid. It achieves this in the absence of a seed crystal or nucleus around which a crystal structure can form. The supercooling of water can be achieved without any special techniques other than chemical demineralization, down to −48.3 °C (−55 °F). Droplets of supercooled water often exist in stratus and cumulus clouds. An aircraft flying through such a cloud sees an abrupt crystallization of these droplets, which can result in the formation of ice on the aircraft's wings or blockage of its instruments and probes.

Frozen food Food stored at temperatures below the freezing point of water, for extending its shelf life

Freezing food preserves it from the time it is prepared to the time it is eaten. Since early times, farmers, fishermen, and trappers have preserved grains and produce in unheated buildings during the winter season. Freezing food slows down decomposition by turning residual moisture into ice, inhibiting the growth of most bacterial species. In the food commodity industry, there are two processes: mechanical and cryogenic. The freezing kinetics is important to preserve the food quality and texture. Quicker freezing generates smaller ice crystals and maintains cellular structure. Cryogenic freezing is the quickest freezing technology available due to the ultra low liquid nitrogen temperature −196 °C (−320 °F).

In physics and chemistry, flash freezing is the process whereby objects are frozen in just a few hours by subjecting them to cryogenic temperatures, or through direct contact with liquid nitrogen at −196 °C (−320.8 °F). It is commonly used in the food industry.

Chiller

A chiller is a machine that removes heat from a liquid via a vapor-compression, Adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when water cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

Refrigerator Household or industrial appliance for preserving perishable items at a low temperature

A refrigerator is a home appliance consisting of a thermally insulated compartment and a heat pump that transfers heat from its inside to its external environment so that its inside is cooled to a temperature below the room temperature. Refrigeration is an essential food storage technique in developed countries. The lower temperature lowers the reproduction rate of bacteria, so the refrigerator reduces the rate of spoilage. A refrigerator maintains a temperature a few degrees above the freezing point of water. Optimum temperature range for perishable food storage is 3 to 5 °C. A similar device that maintains a temperature below the freezing point of water is called a freezer. The refrigerator replaced the icebox, which had been a common household appliance for almost a century and a half.

Frazil ice A collection of loose, randomly oriented, plate or discoid ice crystals formed in supercooled turbulent water

Frazil ice is a collection of loose, randomly oriented, plate or discoid ice crystals formed in supercooled turbulent water. Its formation is common during the winter in rivers and lakes located in northern latitudes, and usually forms in open-water reaches of rivers where and when the heat exchange between the air and the water is such that the water temperature can drop below its freezing point. As a rule of thumb, such conditions may happen on cold and clear nights, when the air temperature is lower than −6 °C (21 °F). Frazil ice also forms in oceans, where it is often referred to as grease ice when floating on the surface.

Crystallization

Crystallization or crystallisation is the process by which a solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some of the ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, and in the case of liquid crystals, time of fluid evaporation.

Rime ice

Rime ice forms when supercooled water liquid droplets freeze onto surfaces. Meteorologists distinguish between three basic types of ice forming on vertical and horizontal surfaces by deposition of supercooled water droplets. There are also intermediate formations.

Icemaker

An icemaker, ice generator, or ice machine may refer to either a consumer device for making ice, found inside a home freezer; a stand-alone appliance for making ice, or an industrial machine for making ice on a large scale. The term "ice machine" usually refers to the stand-alone appliance.

Absorption refrigerator

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. The system uses two coolants, the first of which performs evaporative cooling and is then absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. The principle can also be used to air-condition buildings using the waste heat from a gas turbine or water heater. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because they can be powered with propane fuel, rather than electricity. Unlike more common vapor-compression refrigeration systems, an absorption refrigerator can be produced with no moving parts other than the coolants.

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air-conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using 2 compressors.

Absorption heat pump

An absorption heat pump (AHP) is a heat pump driven by thermal energy such as combustion of natural gas, steam solar-heated water, air or geothermal-heated water differently from compression heat pumps that are driven by mechanical energy.[citation needed] AHPs are more complex and require larger units compared to compression heat pumps. In particular, the lower electricity demand of such heat pumps is related to the liquid pumping only. Their applications are restricted to those cases when electricity is extremely expensive or a large amount of unutilized heat at suitable temperatures is available and when the cooling or heating output has a greater value than heat input consumed. Absorption refrigerators also work on the same principle, but are not reversible and cannot serve as a heat source.[citation needed]

An evaporator is a device in a process used to turn the liquid form of a chemical substance such as water into its gaseous-form/vapor. The liquid is evaporated, or vaporized, into a gas form of the targeted substance in that process.

Sunwell Technologies registered the world's first slurry ice patent application in the U.S.A. in 1976. Sunwell pioneered and continued to develop the field of slurry ice and is today the world leader in slurry ice systems, with numerous patents worldwide covering various processes for the production, storage and distribution of slurry ice.

Fish preservation

Ancient methods of preserving fish included drying, salting, pickling and smoking. All of these techniques are still used today but the more modern techniques of freezing and canning have taken on a large importance.

Pumpable ice technology

Pumpable ice (PI) technology is a technology to produce and use fluids or secondary refrigerants, also called coolants, with the viscosity of water or jelly and the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 micrometers to 1 cm in diameter and transported in brine, seawater, food liquid, or gas bubbles of air, ozone, or carbon dioxide.

Ice storage air conditioning is the process of using ice for thermal energy storage. This is practical because of water's large heat of fusion: one metric ton of water can store 334 megajoules (MJ) of energy, equivalent to 93 kWh.

A brinicle is a downward-growing hollow tube of ice enclosing a plume of descending brine that is formed beneath developing sea ice.

References