Soil functions

Last updated

Soil functions are general capabilities of soils that are important for various agricultural, environmental, nature protection, landscape architecture and urban applications. Soil can perform many functions and these include functions related to the natural ecosystems, agricultural productivity, environmental quality, source of raw material, and as base for buildings. [1] Six key soil functions are: [2] [3] [4] [5] [6]

Contents

  1. Food and other biomass production
  2. Environmental Interaction
  3. Biological habitat and gene pool
  4. Source of raw materials
  5. Physical and cultural heritage
  6. Platform for man-made structures

Food and other biomass production

Soil acts as an anchor for plant roots. It provides a hospitable place for a plant to live in while storing and supplying nutrients to plants. Soil also functions by maintaining the quantity and quality of air by allowing CO
2
to escape and fresh O
2
to enter the root zone. [7] Pore spaces within soil can also absorb water and hold it until plant roots need it. The soil also moderates temperature fluctuation, providing a suitable temperature for the roots to function normally. A fertile soil will also provide dissolved mineral nutrients for optimal plant growth. The combination of these activities supports plant growth for providing food and other biomass production.

Environmental interaction

Environmental interactions such as regulating water supplies, water loos, utilization, contamination, and purification are all affected by the soil. They can filter, buffer, and transform materials between the atmosphere, the plant cover, and the water table. Soil interacts with the environment to transform and decompose waste materials in to new materials. Through filtering, soil acts as a filter and captures contaminants through soil particles. [3] Contaminants are captured by the soil particles and water comes out cleaner in the aquifers and rivers. Lastly, it can accumulate large amounts of carbon as soil organic matter, thus reducing the total concentration of carbon dioxide that can mitigate global climate change. [7]

Biological habitat and gene pool

Soils also acts as a biological habitat and a gene reserve for a large variety of organisms. [6] Soils are the environment in which seeds grow, they provide heat, nutrients and water that are available to use to nurture plants and animals. The assistance of soil in the decomposition of dead plants, animals, and organism by transforming their remains into simpler mineral forms, can be utilized by other living things.  

Source of raw materials

Soil provides raw materials for human use and impacts human health directly. The composition of human food reflects the nature of the soil in which it was grown. An example of soil as a source of raw material can be found in ancient ceramic production. The Maya ceramics showed traits inherited from soils and sediments used as raw material. [8] The understanding of soil formation process can help define certain type of soil and reflect the composition of soil minerals. However, the natural area of productive soils is limited and due to increasing pressure of cropping, forestry, and urbanization, extracting soil as a raw material needs to be controlled for.  

Physical and cultural heritage

Soil also has more general culture functions as they act as a part of the cultural landscape of our minds as well as the physical world around us. [6] An attachment to home soils or a sense of place is a cultural attribute developed mores strongly in certain people. Soils has been around since the creation of earth, it can act as a factor in determining how humans have migrated in the past. [6] Soil also act as an earth cover that protects and preserve the physical artifacts of the past that can allow us to better understand cultural heritage. Moreover, soil has been an important indication to where people settle as they are an essential resource for human productivity.

Platform for man-made structures

Soil can act as raw material deposits and is widely used in building materials. Approximately 50% of the people on the planet live in houses that are constructed from soil. [7] The conditions of the soil must be firm and solid to provide a good base for roads and highways to be built on. Additionally, since these structures rest on the soil, factors such as its bearing strength, compressibility, stability, and shear strength all need to be considered. [7] Testing the physical properties allow a better application to engineering uses of soil.

Mapping soil functions

Soil mapping is the identification, description, ad delineation on a map of different types of soil based on direct field observations or on indirect inferences from souch sources such as aerial photographs. [9] Soil maps can depict soil properties and functions in the context of specific soil functions such as agricultural food production, environmental protection, and civil engineering considerations. Maps can depict functional interpretations of specific properties such as critical nutrient levels, heavy-metal levels or can depict interpretation of multiple properties such as a map of erosion risk index.

Mapping of function specific soil properties is an extension of soil survey, using maps of soil components together with auxiliary information (including pedotransfer functions and soil inference models) to depict inferences about the specific performance of soil mapping units. Other functions of soil in ecosystems:

See also

Related Research Articles

<span class="mw-page-title-main">Ecosystem</span> Community of living organisms together with the nonliving components of their environment

An ecosystem is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows.

<span class="mw-page-title-main">Fertilizer</span> Substance added to soils to supply plant nutrients for a better growth

A fertilizer or fertiliser is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Many sources of fertilizer exist, both natural and industrially produced. For most modern agricultural practices, fertilization focuses on three main macro nutrients: nitrogen (N), phosphorus (P), and potassium (K) with occasional addition of supplements like rock flour for micronutrients. Farmers apply these fertilizers in a variety of ways: through dry or pelletized or liquid application processes, using large agricultural equipment or hand-tool methods.

<span class="mw-page-title-main">Soil</span> Mixture of organic matter, minerals, gases, liquids, and organisms that together support life

Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from soil by restricting the former term specifically to displaced soil.

<span class="mw-page-title-main">Mycelium</span> Vegetative part of a fungus

Mycelium is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. Its normal form is that of branched, slender, entangled, anastomosing, hyaline threads. Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates into a monokaryotic mycelium, which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as mushrooms. A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in Armillaria.

The following outline is provided as an overview of and topical guide to agriculture:

<span class="mw-page-title-main">Soil science</span> Study of soil as a natural resource on the surface of Earth

Soil science is the study of soil as a natural resource on the surface of the Earth including soil formation, classification and mapping; physical, chemical, biological, and fertility properties of soils; and these properties in relation to the use and management of soils.

<span class="mw-page-title-main">Wetland</span> Land area that is permanently, or seasonally saturated with water

A wetland is a distinct ecosystem that is flooded or saturated by water, either permanently for years or decades or seasonally for a shorter periods. Flooding results in oxygen-free anoxic processes prevailing, especially in the soils. The primary factor that distinguishes wetlands from terrestrial land forms or water bodies is the characteristic vegetation of aquatic plants, adapted to the unique anoxic hydric soils. Wetlands are considered among the most biologically diverse of all ecosystems, serving as home to a wide range of plant and animal species. Methods for assessing wetland functions, wetland ecological health, and general wetland condition have been developed for many regions of the world. These methods have contributed to wetland conservation partly by raising public awareness of the functions some wetlands provide. Constructed wetlands are designed and built to treat municipal and industrial wastewater as well as to divert stormwater runoff. Constructed wetlands may also play a role in water-sensitive urban design.

Natural Resources Conservation Service (NRCS), formerly known as the Soil Conservation Service (SCS), is an agency of the United States Department of Agriculture (USDA) that provides technical assistance to farmers and other private landowners and managers.

Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come from the feces and remains of organisms such as plants and animals. Organic molecules can also be made by chemical reactions that do not involve life. Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates. Organic matter is very important in the movement of nutrients in the environment and plays a role in water retention on the surface of the planet.

<span class="mw-page-title-main">Ecosystem ecology</span> Study of living and non-living components of ecosystems and their interactions

Ecosystem ecology is the integrated study of living (biotic) and non-living (abiotic) components of ecosystems and their interactions within an ecosystem framework. This science examines how ecosystems work and relates this to their components such as chemicals, bedrock, soil, plants, and animals.

<span class="mw-page-title-main">Ecosystem service</span> Benefits provided by healthy nature, forests and environmental systems

Ecosystem services are the various benefits that humans derive from healthy ecosystems. These ecosystems, when functioning well, offer such things as provision of food, natural pollination of crops, clean air and water, decomposition of wastes, or flood control. Ecosystem services are grouped into four broad categories of services. There are provisioning services, such as the production of food and water. Regulating services, such as the control of climate and disease. Supporting services, such as nutrient cycles and oxygen production. And finally there are cultural services, such as spiritual and recreational benefits. Evaluations of ecosystem services may include assigning an economic value to them.

<span class="mw-page-title-main">Aquatic ecosystem</span> Ecosystem in a body of water

An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.

<span class="mw-page-title-main">Agricultural soil science</span> Branch of soil science

Agricultural soil science is a branch of soil science that deals with the study of edaphic conditions as they relate to the production of food and fiber. In this context, it is also a constituent of the field of agronomy and is thus also described as soil agronomy.

Soil ecology is the study of the interactions among soil organisms, and between biotic and abiotic aspects of the soil environment. It is particularly concerned with the cycling of nutrients, formation and stabilization of the pore structure, the spread and vitality of pathogens, and the biodiversity of this rich biological community.

<span class="mw-page-title-main">Soil quality</span> Capacity of soil to perform ecosystem services

Soil quality refers to the condition of soil based on its capacity to perform ecosystem services that meet the needs of human and non-human life.

Soil organic matter (SOM) is the organic matter component of soil, consisting of plant and animal detritus at various stages of decomposition, cells and tissues of soil microbes, and substances that soil microbes synthesize. SOM provides numerous benefits to the physical and chemical properties of soil and its capacity to provide regulatory ecosystem services. SOM is especially critical for soil functions and quality.

Soil health is a state of a soil meeting its range of ecosystem functions as appropriate to its environment. In more colloquial terms, the health of soil arises from favorable interactions of all soil components that belong together, as in microbiota, plants and animals. It is possible that a soil can be healthy in terms of ecosystem functioning but not necessarily serve crop production or human nutrition directly, hence the scientific debate on terms and measurements.

This is a glossary of environmental science.

<span class="mw-page-title-main">Nutrient cycle</span> Set of processes exchanging nutrients between parts of a system

A nutrient cycle is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyclic. Mineral cycles include the carbon cycle, sulfur cycle, nitrogen cycle, water cycle, phosphorus cycle, oxygen cycle, among others that continually recycle along with other mineral nutrients into productive ecological nutrition.

<span class="mw-page-title-main">Reuse of human excreta</span> Safe, beneficial use of human excreta mainly in agriculture (after treatment)

Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.

References

  1. Nortcliff, Stephen (December 2006). "Soil, Definition, Function, and Utilization of Soil". doi:10.1002/14356007.b07_613.pub2.{{cite journal}}: Cite journal requires |journal= (help)
  2. Никитин Е.Д. О биогеоценотических функциях почв. — Вестн. Моск. ун-та Сер. Почвоведение. 1977, № 4. pp.3-8.
  3. 1 2 Nikitin, E. D. (1982). The role of soils in the life of nature (in Russian). Znanie, Moscow. p. 47.
  4. Dobrovolsky, G. V.; Nikitin, E. D. (1986). Ecological functions of the soil (in Russian). MSU, Moscow. p. 260.
  5. Dobrovolsky, G. V.; Nikitin, E. D. (1990). Soil functions in the biosphere and ecosystems (in Russian). Nauka, Moscow. p. 260.
  6. 1 2 3 4 Blum, W. E. H. (1993). Eijsackers, H. J. P.; Hamers, T. (eds.). Soil Protection Concept of the Council of Europe and Integrated Soil Research. Kluwer Academic Publisher, Dordrecht. pp. 37–47.{{cite book}}: |work= ignored (help)
  7. 1 2 3 4 Brady, Nyle C. (2016-08-31). The nature and properties of soils. Pearson Education. ISBN   9781292162249. OCLC   965387174.
  8. Cebadas-Baez, Hector Victor (2018). "Soils as a source of raw materials for ancient ceramic production in the Maya region of Mexico: Micromorphological insight" (PDF). Boletín de la Sociedad Geológica Mexicana. 70 (1): 21–48. doi: 10.18268/BSGM2018v70n1a2 .
  9. Mapping Systems Working Group. 198%. A Soil Mapping System for Canada: revised. Land Resource Research Institute, Contribution No. 142, Agriculture Canada, Ottawa, 94 pp.