Pedotransfer function

Last updated

In soil science, pedotransfer functions (PTF) are predictive functions of certain soil properties using data from soil surveys.

Contents

The term pedotransfer function was coined by Johan Bouma [1] as translating data we have into what we need. The most readily available data comes from a soil survey, such as the field morphology, soil texture, structure and pH. Pedotransfer functions add value to this basic information by translating them into estimates of other more laborious and expensively determined soil properties. These functions fill the gap between the available soil data and the properties which are more useful or required for a particular model or quality assessment. Pedotransfer functions utilize various regression analysis and data mining techniques to extract rules associating basic soil properties with more difficult to measure properties.

Although not formally recognized and named until 1989, the concept of the pedotransfer function has long been applied to estimate soil properties that are difficult to determine. Many soil science agencies have their own (unofficial) rule of thumb for estimating difficult-to-measure soil properties. Probably because of the particular difficulty, cost of measurement, and availability of large databases, the most comprehensive research in developing PTFs has been for the estimation of water retention curve and hydraulic conductivity.

History

The first PTF came from the study of Lyman Briggs and McLane (1907). They determined the wilting coefficient, which is defined as percentage water content of a soil when the plants growing in that soil are first reduced to a wilted condition from which they cannot recover in an approximately saturated atmosphere without the addition of water to the soil, as a function of particle-size:

Wilting coefficient = 0.01 sand + 0.12 silt + 0.57 clay

With the introduction of the field capacity (FC) and permanent wilting point (PWP) concepts by Frank Veihmeyer and Arthur Hendricksen (1927), research during the period 1950-1980 attempted to correlate particle-size distribution, bulk density and organic matter content with water content at field capacity (FC), permanent wilting point (PWP), and available water capacity (AWC).

In the 1960s various papers dealt with the estimation of FC, PWP, and AWC, notably in a series of papers by Salter and Williams (1965 etc.). They explored relationships between texture classes and available water capacity, which are now known as class PTFs. They also developed functions relating the particle-size distribution to AWC, now known as continuous PTFs. They asserted that their functions could predict AWC to a mean accuracy of 16%.

In the 1970s more comprehensive research using large databases was developed. A particularly good example is the study by Hall et al. (1977) from soil in England and Wales; they established field capacity, permanent wilting point, available water content, and air capacity as a function of textural class, and as well as deriving continuous functions estimating these soil-water properties. In the USA, Gupta and Larson (1979) developed 12 functions relating particle-size distribution and organic matter content to water content at potentials ranging from -4 kPa to -1500 kPa.

With the flourishing development of models describing soil hydraulic properties and computer modelling of soil-water and solute transport, the need for hydraulic properties as inputs to these models became more evident. Clapp and Hornberger (1978) derived average values for the parameters of a power-function water retention curve, sorptivity and saturated hydraulic conductivity for different texture classes. In probably the first research of its kind, Bloemen (1977) derived empirical equations relating parameters of the Brooks and Corey hydraulic model to particle-size distribution.

Jurgen Lamp and Kneib (1981) from Germany introduced the term pedofunction, while Bouma and van Lanen (1986) used the term transfer function. To avoid confusion with the term transfer function used in soil physics and in many other disciplines, Johan Bouma (1989) later called it pedotransfer function. (A personal anecdote hinted that Arnold Bregt from Wageningen University suggested this term).

Since then, the development of hydraulic PTFs has become a boom research topic, first in the US and Europe, South America, Australia and all over the world.

Although most PTFs have been developed to predict soil hydraulic properties, they are not restricted to hydraulic properties. PTFs for estimating soil physical, mechanical, chemical and biological properties have also been developed.

Software

There are several available programs that aid determining hydraulic properties of soils using pedotransfer functions, among them are

Soil inference systems

McBratney et al. (2002) introduced the concept of a soil inference system, SINFERS, where pedotransfer functions are the knowledge rules for soil inference engines. A soil inference system takes measurements with a given level of certainty (source) and by means of logically linked pedotransfer functions (organiser) infers data that is not known with minimal inaccuracy (predictor). [4]

See also

Related Research Articles

<span class="mw-page-title-main">Soil test</span>

Soil test may refer to one or more of a wide variety of soil analysis conducted for one of several possible reasons. Possibly the most widely conducted soil tests are those done to estimate the plant-available concentrations of plant nutrients, in order to determine fertilizer recommendations in agriculture. Other soil tests may be done for engineering (geotechnical), geochemical or ecological investigations.

Soil moisture is the water content of the soil. It can be expressed in terms of volume or weight. Soil moisture measurement can be based on in situ probes or remote sensing methods.

In science and engineering, hydraulic conductivity, is a property of porous materials, soils and rocks,< that describes the ease with which a fluid can move through the pore space, or fractures network. It depends on the intrinsic permeability of the material, the degree of saturation, and on the density and viscosity of the fluid. Saturated hydraulic conductivity, Ksat, describes water movement through saturated media. By definition, hydraulic conductivity is the ratio of volume flux to hydraulic gradient yielding a quantitative measure of a saturated soil's ability to transmit water when subjected to a hydraulic gradient.

<span class="mw-page-title-main">Water content</span> Quantity of water contained in a material

Water content or moisture content is the quantity of water contained in a material, such as soil, rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as a ratio, which can range from 0 to the value of the materials' porosity at saturation. It can be given on a volumetric or mass (gravimetric) basis.

Soil functions are general capabilities of soils that are important for various agricultural, environmental, nature protection, landscape architecture and urban applications. Soil can perform many functions and these include functions related to the natural ecosystems, agricultural productivity, environmental quality, source of raw material, and as base for buildings. Six key soil functions are:

  1. Food and other biomass production
  2. Environmental Interaction
  3. Biological habitat and gene pool
  4. Source of raw materials
  5. Physical and cultural heritage
  6. Platform for man-made structures

Claypan is a dense, compact, slowly permeable layer in the subsoil. It has a much higher clay content than the overlying material, from which it is separated by a sharply defined boundary. The dense structure restricts root growth and water infiltration. Therefore, a perched water table might form on top of the claypan. In the Canadian classification system, claypan is defined as a clay-enriched illuvial B (Bt) horizon.

<span class="mw-page-title-main">Infiltration (hydrology)</span> Process by which water on the ground surface enters the soil

Infiltration is the process by which water on the ground surface enters the soil. It is commonly used in both hydrology and soil sciences. The infiltration capacity is defined as the maximum rate of infiltration. It is most often measured in meters per day but can also be measured in other units of distance over time if necessary. The infiltration capacity decreases as the soil moisture content of soils surface layers increases. If the precipitation rate exceeds the infiltration rate, runoff will usually occur unless there is some physical barrier.

Field capacity is the amount of soil moisture or water content held in the soil after excess water has drained away and the rate of downward movement has decreased. This usually takes place 2–3 days after rain or irrigation in pervious soils of uniform structure and texture. The physical definition of field capacity is the bulk water content retained in soil at −33 kPa of hydraulic head or suction pressure. The term originated from Israelsen and West and Frank Veihmeyer and Arthur Hendrickson.

<span class="mw-page-title-main">Permanent wilting point</span>

Permanent wilting point (PWP) or wilting point (WP) is defined as the minimum amount of water in the soil that the plant requires not to wilt. If the soil water content decreases to this or any lower point a plant wilts and can no longer recover its turgidity when placed in a saturated atmosphere for 12 hours. The physical definition of the wilting point, symbolically expressed as θpwp or θwp, is said by convention as the water content at −1,500 kPa (−15 bar) of suction pressure, or negative hydraulic head.

Available water capacity is the amount of water that can be stored in a soil profile and be available for growing crops. It is also known as available water content (AWC), profile available water (PAW) or total available water (TAW).

The non-limiting water range (NLWR) represents the range of water content in the soil where limitations to plant growth are minimal. John Letey (1985) from UC Riverside introduced the NLWR concept in an attempt to integrate several physical properties associated with plant or root growth to refine the concept of available water capacity. Alvaro Pires da Silva, Bev Kay, and Ed Perfect (1994) refined the concept and termed it least limiting water range (LLWR).

<span class="mw-page-title-main">Water retention curve</span>

Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. This curve is characteristic for different types of soil, and is also called the soil moisture characteristic.

Soil texture is a classification instrument used both in the field and laboratory to determine soil classes based on their physical texture. Soil texture can be determined using qualitative methods such as texture by feel, and quantitative methods such as the hydrometer method based on Stokes' law. Soil texture has agricultural applications such as determining crop suitability and to predict the response of the soil to environmental and management conditions such as drought or calcium (lime) requirements. Soil texture focuses on the particles that are less than two millimeters in diameter which include sand, silt, and clay. The USDA soil taxonomy and WRB soil classification systems use 12 textural classes whereas the UK-ADAS system uses 11. These classifications are based on the percentages of sand, silt, and clay in the soil.

<span class="mw-page-title-main">Gianni Bellocchi</span> Italian scientist

Gianni Bellocchi is a researcher in agricultural and related sciences. He is credited with the development of approaches and tools in validation of estimates and measurements. Introduction of fuzzy logic in the context of validation is often considered to be the most significant contribution to the field of model and method validation.

<span class="mw-page-title-main">Geotechnical investigation</span> Work done to obtain information on the physical properties of soil earthworks and foundations

Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions; this type of investigation is called a site investigation. Geotechnical investigations are also used to measure the thermal resistance of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.

The pore space of soil contains the liquid and gas phases of soil, i.e., everything but the solid phase that contains mainly minerals of varying sizes as well as organic compounds.

Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

Soils can process and hold considerable amounts of water. They can take in water, and will keep doing so until they are full, or until the rate at which they can transmit water into and through the pores is exceeded. Some of this water will steadily drain through the soil and end up in the waterways and streams, but much of it will be retained, despite the influence of gravity. Much of this retained water can be used by plants and other organisms, also contributing to land productivity and soil health.

Modelling frameworks are used in modelling and simulation and can consist of a software infrastructure to develop and run mathematical models. They have provided a substantial step forward in the area of biophysical modelling with respect to monolithic implementations. The separation of algorithms from data, the reusability of I/O procedures and integration services, and the isolation of modelling solutions in discrete units has brought a solid advantage in the development of simulation systems. Modelling frameworks for agriculture have evolved over time, with different approaches and targets

Constructed soils are mixtures of organic and mineral material derived from a number of sources, including repurposed organic waste, that are designed to approximate natural soils and provide a growing medium for plants. Constructed soils are commonly used in the reclamation of degraded land where natural topsoil is either not present or has been contaminated. Examples of these sites include mines, landfills, and other industrial or urban areas. Constructed soils are classified as Technosols, and often form the upper layer, or layers, in a Technosol above a geomembrane or other barrier capping waste material.

References

  1. Bouma, J. (1989). "Using Soil Survey Data for Quantitative Land Evaluation". Advances in Soil Science. Vol. 9. pp. 177–213. doi:10.1007/978-1-4612-3532-3_4. ISBN   978-1-4612-8144-3.
  2. Acutis, M., and Donatelli, M. (2003). "SOILPAR 2.00: software to estimate soil hydrological parameters and functions". European Journal of Agronomy. 18 (3–4): 373–377. doi:10.1016/S1161-0301(02)00128-4.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Schaap, M.G., Leij, F.J., and van Genuchten, M.Th. (2001). "rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions". Journal of Hydrology. 251 (3): 163–176. doi:10.1016/S0022-1694(01)00466-8.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Minasny, Budiman (2007). "Predicting soil properties". Jurnal Ilmu Tanah Dan Lingkungan. 7 (1): 54–67.