R-410A

Last updated

R-410A is a refrigerant used in air conditioning and heat pump applications. It is a zeotropic but near-azeotropic mixture of difluoromethane (CH2F2, called R-32) and pentafluoroethane (CHF2CF3, called R-125). R-410A is sold under the trademarked names AZ-20, EcoFluor R410, Forane 410A, Genetron R410A, Puron, and Suva 410A.

Contents

On December 27, 2020, the United States Congress passed the American Innovation and Manufacturing (AIM) Act, which directs US Environmental Protection Agency (EPA) to phase down production and consumption of hydrofluorocarbons (HFCs). [1] [2] The AIM act was passed because HFCs have high global warming potential. Rules developed under the AIM Act require HFC production and consumption to be reduced by 85% from 2022 to 2036. [3] R-410A will be restricted by this Act because it contains the HFC R-125. Other refrigerants with lower global warming potential will replace R-410A in most applications, just as R-410A replaced the earlier ozone-depleting refrigerant, R-22. [4]

History

R-410A was invented and patented by Allied Signal (now Honeywell) in 1991. [5] Other producers around the world have been licensed to manufacture and sell R-410A. [6] R-410A was successfully commercialized in the air conditioning segment by a combined effort of Carrier Corporation, Emerson Climate Technologies, Inc., Copeland Scroll Compressors (a division of Emerson Electric Company), and Allied Signal. Carrier Corporation was the first company to introduce an R-410A-based residential air conditioning unit into the market in 1996 and holds the trademark "Puron". [7]

Transition from R-22 to R-410A

In accordance with terms and agreement reached in the Montreal Protocol (The Montreal Protocol on Substances That Deplete the Ozone Layer), the United States Environmental Protection Agency mandated that production or import of R-22 along with other hydrochlorofluorocarbons (HCFCs) be phased out in the United States. In the EU and the US, R-22 could not be used in the manufacture of new air conditioning or similar units after 1 January 2010. [8] In other parts of the world, the phase-out date varied from country to country. Since 1 January 2020, the production and importation of R-22 has been banned in the US; the only available sources of R-22 include that which has been stockpiled or recovered from existing devices. [8]

By 2020, most newly manufactured window air conditioners and mini split air conditioners in the United States used refrigerant R-410A. [9] Further, R-410A had largely replaced R-22 as the preferred refrigerant for use in residential and commercial air conditioners in Japan and Europe, as well as the United States. [8]

Environmental effects

Rapid growth of R-410A (HFC-125/HFC-32) atmospheric concentrations, when & IF leaked (bottom-right graph). HCFC and HFC atmospheric trends.png
Rapid growth of R-410A (HFC-125/HFC-32) atmospheric concentrations, when & IF leaked (bottom-right graph).

Unlike alkyl halide refrigerants that contain bromine or chlorine, R-410A (which contains only fluorine) does not contribute to ozone depletion and therefore became more widely used as ozone-depleting refrigerants like R-22 were phased out. However, like methane, R-410A has a global warming potential (GWP) that is appreciably worse than CO2 (GWP = 1) for the time it persists. R-410A is a mixture of 50% HFC-32 and 50% HFC-125. HFC-32 has a 4.9 year lifetime and a 100-year GWP of 675 and HFC-125 has a 29-year lifetime and a 100-year GWP of 3500. [10] [11] The combination has an effective GWP of 2088, higher than that of R-22 (100-year GWP = 1810), and an atmospheric lifetime of nearly 30 years compared with the 12-year lifetime of R-22. [12] [13]

Since R-410A allows for higher SEER ratings than an R-22 system by reducing power consumption, the overall impact on global warming of R-410A systems can, in some cases, be lower than that of R-22 systems due to reduced greenhouse gas emissions from power plants. [11] This assumes that the atmospheric leakage will be sufficiently managed. [14] Under the assumption that preventing ozone depletion is more important in the short term than GWP reduction, R-410A is preferable to R-22. [11]

R-410A Phaseout

The phase-down mandated by the AIM Act will lead to R-410A's replacement by other refrigerants beginning in 2022. Alternative refrigerants are available, including hydrofluoroolefins, R-454B (a zeotropic blend of R-32 and R-1234yf), hydrocarbons (such as propane R-290 and isobutane R-600A), and even carbon dioxide (R-744, GWP = 1). [4] [15] [16] [17] The alternative refrigerants have much lower global warming potential than R-410A. Some alternatives have mild or moderate flammability, operate in higher pressure ranges, or require specialized compressor lubricants and seals.

Physical properties

R-410A is an A1 class non-flammable substance according to ISO 817 & ASHRAE 34. One of its components, R-32, is mildly flammable (AL2), and the other, R-125, is an A1 class substance that suppresses the flammability of R32.

Physical properties of R-410A refrigerant [18] [19] [20]
PropertyValue
Formula
CH2F2 (difluoromethane)(50%)
CHF2CF3 (pentafluoroethane)(50%)
Molecular weight (Da)72.6
Melting point (°C)155
Boiling point (°C)48.5
Liquid density (30 °C), kg/m31040
Vapour density (30 °C), air=1.03.0
Vapour pressure at 21.1 °C (MPa)1.383
Critical temperature (°C)72.8
Critical pressure, MPa4.90
Gas heat capacity (kJ/(kg·°C))0.84
Liquid heat capacity @ 1 atm, 30 °C, (kJ/(kg·°C))1.8
Flash point R-410A should not be mixed with air (oxygen) under pressure
Autoignition temperature Difluoromethane: 648 °C; pentafluoroethane is fire-retardant

Thermophysical properties - Properties of refrigerant R410a

Precautions

R-410A cannot be used in R-22 service equipment because of higher operating pressures (approximately 40 to 70% higher). Parts designed specifically for R-410A must be used. R-410A systems thus require service personnel to use different tools, equipment, safety standards, and techniques to manage the higher pressure. Equipment manufacturers were aware of these differences and required the certification of professionals installing R-410A systems. In addition, the AC&R Safety Coalition was created to help educate professionals about R-410A systems.

R-410A cylinders were once colored rose, but they now bear a standard light gray color. [21] [22]

While R-410A has negligible fractionation potential, it cannot be ignored when charging.

Trade names

See also

Related Research Articles

<span class="mw-page-title-main">Chlorofluorocarbon</span> Class of organic compounds

Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are fully or partly halogenated hydrocarbons that contain carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F), produced as volatile derivatives of methane, ethane, and propane.

<span class="mw-page-title-main">Refrigerant</span> Substance in a refrigeration cycle

A refrigerant is a working fluid used in the refrigeration cycle of air conditioning systems and heat pumps where in most cases they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated due to their toxicity, flammability and the contribution of CFC and HCFC refrigerants to ozone depletion and that of HFC refrigerants to climate change.

Difluoromethane, also called difluoromethylene, HFC-32Methylene Fluoride or R-32, is an organic compound of the dihalogenoalkane variety. It has the formula of CH2F2. It is a colorless gas in the ambient atmosphere and is slightly soluble in water, with a high thermal stability. Due to the low melting and boiling point, (-136.0 °C and -51.6 °C respectively) contact with this compound may result in frostbite. In the United States, the Clean Air Act Section 111 on Volatile Organic Compounds (VOC) has listed difluoromethane as an exception (since 1997) from the definition of VOC due to its low production of tropospheric ozone. Difluoromethane is commonly used in endothermic processes such as refrigeration or air conditioning.

1,1,1,2-Tetrafluoroethane (also known as norflurane (INN), R-134a, Klea 134a, Freon 134a, Forane 134a, Genetron 134a, Green Gas, Florasol 134a, Suva 134a, HFA-134a, or HFC-134a) is a hydrofluorocarbon (HFC) and haloalkane refrigerant with thermodynamic properties similar to R-12 (dichlorodifluoromethane) but with insignificant ozone depletion potential and a lower 100-year global warming potential (1,430, compared to R-12's GWP of 10,900). It has the formula CF3CH2F and a boiling point of −26.3 °C (−15.34 °F) at atmospheric pressure. R-134a cylinders are colored light blue. A phaseout and transition to HFO-1234yf and other refrigerants, with GWPs similar to CO2, began in 2012 within the automotive market.

<span class="mw-page-title-main">Chlorodifluoromethane</span> Chemical propellant and refrigerant

Chlorodifluoromethane or difluoromonochloromethane is a hydrochlorofluorocarbon (HCFC). This colorless gas is better known as HCFC-22, or R-22, or CHClF
2
. It was commonly used as a propellant and refrigerant. These applications were phased out under the Montreal Protocol in developed countries in 2020 due to the compound's ozone depletion potential (ODP) and high global warming potential (GWP), and in developing countries this process will be completed by 2030. R-22 is a versatile intermediate in industrial organofluorine chemistry, e.g. as a precursor to tetrafluoroethylene.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

<span class="mw-page-title-main">Air source heat pump</span> Most common type of heat pump

An air source heat pump (ASHP) is a heat pump that can absorb heat from air outside a building and release it inside; it uses the same vapor-compression refrigeration process and much the same equipment as an air conditioner, but in the opposite direction. ASHPs are the most common type of heat pump and, usually being smaller, tend to be used to heat individual houses or flats rather than blocks, districts or industrial processes.

Natural refrigerants are considered substances that serve as refrigerants in refrigeration systems. They are alternatives to synthetic refrigerants such as chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC) based refrigerants. Unlike other refrigerants, natural refrigerants can be found in nature and are commercially available thanks to physical industrial processes like fractional distillation, chemical reactions such as Haber process and spin-off gases. The most prominent of these include various natural hydrocarbons, carbon dioxide, ammonia, and water. Natural refrigerants are preferred actually in new equipment to their synthetic counterparts for their presumption of higher degrees of sustainability. With the current technologies available, almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.

<span class="mw-page-title-main">2,3,3,3-Tetrafluoropropene</span> Chemical compound

2,3,3,3-Tetrafluoropropene, HFO-1234yf, is a hydrofluoroolefin (HFO) with molecular formula CH2=CFCF3. Its primary application is as a refrigerant with low global warming potential (GWP).

<span class="mw-page-title-main">1,1-Dichloro-1-fluoroethane</span> Chemical compound

1,1-Dichloro-1-fluoroethane is a haloalkane with the formula C
2
H
3
Cl
2
F
. It is one of the three isomers of dichlorofluoroethane. It belongs to the hydrochlorofluorocarbon (HCFC) family of man-made compounds that contribute significantly to both ozone depletion and global warming when released into the environment.

<span class="mw-page-title-main">Pentafluoroethane</span> Chemical compound

Pentafluoroethane is a fluorocarbon with the formula CF3CHF2. Pentafluoroethane is currently used as a refrigerant (known as R-125) and also used as a fire suppression agent in fire suppression systems.

<span class="mw-page-title-main">1-Chloro-1,1-difluoroethane</span> Chemical compound

1-Chloro-1,1-difluoroethane (HCFC-142b) is a haloalkane with the chemical formula CH3CClF2. It belongs to the hydrochlorofluorocarbon (HCFC) family of man-made compounds that contribute significantly to both ozone depletion and global warming when released into the environment. It is primarily used as a refrigerant where it is also known as R-142b and by trade names including Freon-142b.

<span class="mw-page-title-main">Hydrofluoroolefin</span> Class of chemical compounds

Hydrofluoroolefins (HFOs) are unsaturated organic compounds composed of hydrogen, fluorine and carbon. These organofluorine compounds are of interest as refrigerants. Unlike traditional hydrofluorocarbons (HFCs) and chlorofluorocarbons (CFCs), which are saturated, HFOs are olefins, otherwise known as alkenes.

<i>trans</i>-1,3,3,3-Tetrafluoropropene Chemical compound

trans-1,3,3,3-Tetrafluoropropene (HFO-1234ze(E), R-1234ze(E)) is a hydrofluoroolefin. It was developed as a "fourth generation" refrigerant to replace fluids such as R-134a, as a blowing agent for foam and aerosol applications, and in air horns and gas dusters. The use of R-134a is being phased out because of its high global warming potential (GWP). HFO-1234ze(E) itself has zero ozone-depletion potential (ODP=0), a very low global warming potential (GWP < 1 ), even lower than CO2, and it is classified by ANSI/ASHRAE as class A2L refrigerant (lower flammability and lower toxicity).

Fluorinated gases (F-gases) are a group of gases containing fluorine. They are divided into several types, the main of those are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6). They are used in refrigeration, air conditioning, heat pumps, fire suppression, electronics, aerospace, magnesium industry, foam and high voltage switchgear. As they are greenhouse gases with a strong global warming potential, their use is regulated.

Barbara Haviland Minor is an American chemical engineer, known for the development of refrigerants. She was technical leader for chemical company DuPont in the development of R-1234yf, a refrigerant which, as of 2018, was used in 50% of all new vehicles produced by original equipment manufacturers, and which represented an important contribution to countering global warming.

R-454B, also known by the trademarked names Opteon XL41, Solstice 454B, and Puron Advance, is a zeotropic blend of 68.9 percent difluoromethane (R-32), a hydrofluorocarbon, and 31.1 percent 2,3,3,3-tetrafluoropropene (R-1234yf), a hydrofluoroolefin. Because of its reduced global warming potential (GWP), R-454B is intended to be an alternative to refrigerant R-410A in new equipment. R-454B has a GWP of 466, which is 78 percent lower than R-410A's GWP of 2088.

Life Cycle Climate Performance (LCCP) is an evolving method to evaluate the carbon footprint and global warming impact of heating, ventilation, air conditioning (AC), refrigeration systems, and potentially other applications such as thermal insulating foam. It is calculated as the sum of direct, indirect, and embodied greenhouse gas (GHG) emissions generated over the lifetime of the system “from cradle to grave,” i.e. from manufacture to disposal. Direct emissions include all climate forcing effects from the release of refrigerants into the atmosphere, including annual leakage and losses during service and disposal of the unit. Indirect emissions include the climate forcing effects of GHG emissions from the electricity powering the equipment. The embodied emissions include the climate forcing effects of the manufacturing processes, transport, and installation for the refrigerant, materials, and equipment, and for recycle or other disposal of the product at end of its useful life.

The Significant New Alternatives Policy is a program of the EPA to determine acceptable chemical substitutes, and establish which are prohibited or regulated by the EPA. It also establishes a program by which new alternatives may be accepted, and promulgates timelines to the industry regarding phase-outs of substitutes.

References

  1. "Protecting Our Climate by Reducing Use of HFCs". US Environmental Protection Agency. 8 February 2021. Retrieved 25 August 2022.
  2. "Background on HFCs and the AIM Act". www.usepa.gov. US EPA. Retrieved 27 June 2024.
  3. EPA Press Office (23 September 2021). "U.S. Will Dramatically Cut Climate-Damaging Greenhouse Gases with New Program Aimed at Chemicals Used in Air Conditioning, Refrigeration". US Environmental Protection Agency. Retrieved 25 August 2022.
  4. 1 2 "Choosing a New System?". California Air Resources Board. Retrieved 25 August 2022.
  5. "Home". www.honeywell.com. Archived from the original on November 16, 2007.
  6. "Home". www.honeywell.com. Archived from the original on November 25, 2007.
  7. "PURON - Reviews & Brand Information - Carrier Corporation SYRACUSE, NY - Serial Number: 77215886". Trademarkia.com. Retrieved 2016-05-01.
  8. 1 2 3 "Phaseout of Class II Ozone-Depleting Substances" . Retrieved 2024-06-26.
  9. "Honeywell AZ-20 (R-410A) Refrigerant". Archived from the original on 2017-09-24. Retrieved 2021-09-01.
  10. Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; McFarland, Mack; Andersen, Stephen O. (July 7, 2009). "The large contribution of projected (if leakage is not controlled) HFC emissions to future climate forcing". Proceedings of the National Academy of Sciences. 106 (27): 10949–10954. Bibcode:2009PNAS..10610949V. doi: 10.1073/pnas.0902817106 . PMC   2700150 . PMID   19549868.
  11. 1 2 3 Pierrehumbert, R.T. (May 30, 2014). "Short-Lived Climate Pollution". Annual Review of Earth and Planetary Sciences. 42 (1): 341–379. Bibcode:2014AREPS..42..341P. doi: 10.1146/annurev-earth-060313-054843 .
  12. "IPCC Assessment Report 4 (AR4) 2007" (PDF). p. 212. Retrieved 25 August 2022.
  13. "High-GWP Refrigerants". California Air Resources Board. Retrieved 25 August 2022.
  14. "The Essentials Of Working With R-410A" (PDF). Florida State College at Jacksonville. p. 7. Archived from the original (PDF) on September 4, 2014. Retrieved November 21, 2013.
  15. "TRANSITIONING TO LOW-GWP ALTERNATIVES in Residential and Commercial Air Conditioning and Chillers" (PDF). US Environmental Protection Agency. December 2016. Retrieved 25 August 2022.
  16. Johnston, Philip (2020-10-13). "What's Next: Specifying the Right R-410A Replacement". Engineered Systems Magazine.
  17. "Carrier Introduces Puron Advance™: The Next Generation Refrigerant for Ducted Residential, Light Commercial Products in North America". Carrier Commercial Systems North America. Retrieved 26 June 2024.
  18. "R-410a Material Safety Data Sheet" (PDF). Honeywell International Inc. Archived from the original (PDF) on 2010-10-11. Retrieved 2009-07-03.
  19. "Puron Refrigerant R-410A" (PDF). Archived from the original on 21 December 2006. Retrieved 2 July 2014.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  20. "R-410A" (PDF). Honeywell Refrigerants Europe. Archived from the original (PDF) on 27 March 2014. Retrieved 26 April 2013.
  21. "Refrigerants - Color Codes". www.engineeringtoolbox.com.
  22. "Refrigerant Color Codes". 24 May 2023.