Hydrofluoroolefin

Last updated
Chemical structure of 1,3,3,3-tetrafluoropropene (HFO-1234ze) HFO-1234ze.svg
Chemical structure of 1,3,3,3-tetrafluoropropene (HFO-1234ze)

Hydrofluoroolefins (HFOs) are unsaturated organic compounds composed of hydrogen, fluorine and carbon. These organofluorine compounds are of interest as refrigerants. Unlike traditional hydrofluorocarbons (HFCs) and chlorofluorocarbons (CFCs), which are saturated, HFOs are olefins, otherwise known as alkenes.

Contents

HFO refrigerants are categorized as having zero ozone depletion potential (ODP) and low global warming potential (GWP) and so offer a more environmentally friendly alternative to CFC, HCFC, and HFC refrigerants. Compared to HCFCs and HFCs, HFOs have shorter tropospheric lifetimes due to the reactivity of the C=C bond with hydroxyl radicals and chlorine radicals. [1] This quick reactivity prevents them from reaching the stratosphere and participating in the depletion of good ozone, leading to strong interest in the development and characterization of new HFO blends for use as refrigerants. [2] Many refrigerants in the HFO class are inherently stable chemically and inert, non toxic, and non-flammable or mildly flammable. Many HFOs have the proper freezing and boiling points to be useful for refrigeration at common temperatures. They have also been adopted as blowing agents, i.e. in production of insulation foams, food industry, construction materials, and others. However, HFOs degrade to produce trifluoroacetic acid, a persistent toxic chemical which can lead to acidification of water bodies, and which can accumulate in wetlands, a sensitive ecosystem. [3]

HFOs are being developed as "fourth generation" refrigerants with 0.1% of the GWP of HFCs. [4] [5] [6]

Examples

HFOs in use include:

The largest brand of HFOs is Opteon, produced by Chemours (a DuPont spin-off). [12]

See also

Related Research Articles

<span class="mw-page-title-main">Chlorofluorocarbon</span> Class of organic compounds

Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are fully or partly halogenated hydrocarbons that contain carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F), produced as volatile derivatives of methane, ethane, and propane.

<span class="mw-page-title-main">Refrigerant</span> Substance in a refrigeration cycle

A refrigerant is a working fluid used in cooling, heating or reverse cooling and heating of air conditioning systems and heat pumps where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated because of their toxicity and flammability and the contribution of CFC and HCFC refrigerants to ozone depletion and that of HFC refrigerants to climate change.

<span class="mw-page-title-main">Hydrofluorocarbon</span> Synthetic organic compounds

Hydrofluorocarbons (HFCs) are synthetic organic compounds that contain fluorine and hydrogen atoms, and are the most common type of organofluorine compounds. Most are gases at room temperature and pressure. They are frequently used in air conditioning and as refrigerants; R-134a (1,1,1,2-tetrafluoroethane) is one of the most commonly used HFC refrigerants. In order to aid the recovery of the stratospheric ozone layer, HFCs were adopted to replace the more potent chlorofluorocarbons (CFCs), which were phased out from use by the Montreal Protocol, and hydrochlorofluorocarbons (HCFCs) which are presently being phased out. HFCs replaced older chlorofluorocarbons such as R-12 and hydrochlorofluorocarbons such as R-21. HFCs are also used in insulating foams, aerosol propellants, as solvents and for fire protection.

1,1,1,2-Tetrafluoroethane (also known as norflurane (INN), R-134a, Klea 134a, Freon 134a, Forane 134a, Genetron 134a, Green Gas, Florasol 134a, Suva 134a, HFA-134a, or HFC-134a) is a hydrofluorocarbon (HFC) and haloalkane refrigerant with thermodynamic properties similar to R-12 (dichlorodifluoromethane) but with insignificant ozone depletion potential and a lower 100-year global warming potential (1,430, compared to R-12's GWP of 10,900). It has the formula CF3CH2F and a boiling point of −26.3 °C (−15.34 °F) at atmospheric pressure. R-134a cylinders are colored light blue. A phaseout and transition to HFO-1234yf and other refrigerants, with GWPs similar to CO2, began in 2012 within the automotive market.

<span class="mw-page-title-main">Chlorodifluoromethane</span> Chemical propellant and refrigerant

Chlorodifluoromethane or difluoromonochloromethane is a hydrochlorofluorocarbon (HCFC). This colorless gas is better known as HCFC-22, or R-22, or CHClF
2
. It was commonly used as a propellant and refrigerant. These applications were phased out under the Montreal Protocol in developed countries in 2020 due to the compound's ozone depletion potential (ODP) and high global warming potential (GWP), and in developing countries this process will be completed by 2030. R-22 is a versatile intermediate in industrial organofluorine chemistry, e.g. as a precursor to tetrafluoroethylene.

R-410A is a refrigerant used in air conditioning and heat pump applications. It is a zeotropic but near-azeotropic mixture of difluoromethane (CH2F2, called R-32) and pentafluoroethane (CHF2CF3, called R-125). R-410A is sold under the trademarked names AZ-20, EcoFluor R410, Forane 410A, Genetron R410A, Puron, and Suva 410A.

A zeotropicmixture, or non-azeotropic mixture, is a mixture with liquid components that have different boiling points. For example, nitrogen, methane, ethane, propane, and isobutane constitute a zeotropic mixture. Individual substances within the mixture do not evaporate or condense at the same temperature as one substance. In other words, the mixture has a temperature glide, as the phase change occurs in a temperature range of about four to seven degrees Celsius, rather than at a constant temperature. On temperature-composition graphs, this temperature glide can be seen as the temperature difference between the bubble point and dew point. For zeotropic mixtures, the temperatures on the bubble (boiling) curve are between the individual component's boiling temperatures. When a zeotropic mixture is boiled or condensed, the composition of the liquid and the vapor changes according to the mixtures's temperature-composition diagram.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

<span class="mw-page-title-main">Air source heat pump</span> Most common type of heat pump

An air source heat pump (ASHP) is a heat pump that can absorb heat from air outside a building and release it inside; it uses the same vapor-compression refrigeration process and much the same equipment as an air conditioner, but in the opposite direction. ASHPs are the most common type of heat pump and, usually being smaller, tend to be used to heat individual houses or flats rather than blocks, districts or industrial processes.

<span class="mw-page-title-main">Transcritical cycle</span> Closed thermodynamic cycle involving fluid

A transcritical cycle is a closed thermodynamic cycle where the working fluid goes through both subcritical and supercritical states. In particular, for power cycles the working fluid is kept in the liquid region during the compression phase and in vapour and/or supercritical conditions during the expansion phase. The ultrasupercritical steam Rankine cycle represents a widespread transcritical cycle in the electricity generation field from fossil fuels, where water is used as working fluid. Other typical applications of transcritical cycles to the purpose of power generation are represented by organic Rankine cycles, which are especially suitable to exploit low temperature heat sources, such as geothermal energy, heat recovery applications or waste to energy plants. With respect to subcritical cycles, the transcritical cycle exploits by definition higher pressure ratios, a feature that ultimately yields higher efficiencies for the majority of the working fluids. Considering then also supercritical cycles as a valid alternative to the transcritical ones, the latter cycles are capable of achieving higher specific works due to the limited relative importance of the work of compression work. This evidences the extreme potential of transcritical cycles to the purpose of producing the most power with the least expenditure.

Natural refrigerants are considered substances that serve as refrigerants in refrigeration systems. They are alternatives to synthetic refrigerants such as chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC) based refrigerants. Unlike other refrigerants, natural refrigerants can be found in nature and are commercially available thanks to physical industrial processes like fractional distillation, chemical reactions such as Haber process and spin-off gases. The most prominent of these include various natural hydrocarbons, carbon dioxide, ammonia, and water. Natural refrigerants are preferred actually in new equipment to their synthetic counterparts for their presumption of higher degrees of sustainability. With the current technologies available, almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.

<span class="mw-page-title-main">Organic Rankine cycle</span> Variation on the Rankine thermodynamic cycle

In thermal engineering, the organic Rankine cycle (ORC) is a type of thermodynamic cycle. It is a variation of the Rankine cycle named for its use of an organic, high-molecular-mass fluid whose vaporization temperature is lower than that of water. The fluid allows heat recovery from lower-temperature sources such as biomass combustion, industrial waste heat, geothermal heat, solar ponds etc. The low-temperature heat is converted into useful work, that can itself be converted into electricity.

<span class="mw-page-title-main">2,3,3,3-Tetrafluoropropene</span> Chemical compound

2,3,3,3-Tetrafluoropropene, HFO-1234yf, is a hydrofluoroolefin (HFO) with molecular formula CH2=CFCF3. Its primary application is as a refrigerant with low global warming potential (GWP).

<span class="mw-page-title-main">1-Chloro-1,1-difluoroethane</span> Chemical compound

1-Chloro-1,1-difluoroethane (HCFC-142b) is a haloalkane with the chemical formula CH3CClF2. It belongs to the hydrochlorofluorocarbon (HCFC) family of man-made compounds that contribute significantly to both ozone depletion and global warming when released into the environment. It is primarily used as a refrigerant where it is also known as R-142b and by trade names including Freon-142b.

<i>trans</i>-1,3,3,3-Tetrafluoropropene Chemical compound

trans-1,3,3,3-Tetrafluoropropene (HFO-1234ze(E), R-1234ze(E)) is a hydrofluoroolefin. It was developed as a "fourth generation" refrigerant to replace fluids such as R-134a, as a blowing agent for foam and aerosol applications, and in air horns and gas dusters. The use of R-134a is being phased out because of its high global warming potential (GWP). HFO-1234ze(E) itself has zero ozone-depletion potential (ODP=0), a very low global warming potential (GWP < 1 ), even lower than CO2, and it is classified by ANSI/ASHRAE as class A2L refrigerant (lower flammability and lower toxicity).

Barbara Haviland Minor is an American chemical engineer, known for the development of refrigerants. She was technical leader for chemical company DuPont in the development of R-1234yf, a refrigerant which, as of 2018, was used in 50% of all new vehicles produced by original equipment manufacturers, and which represented an important contribution to countering global warming.

R-454B, also known by the trademarked names Opteon XL41, Solstice 454B, and Puron Advance, is a zeotropic blend of 68.9 percent difluoromethane (R-32), a hydrofluorocarbon, and 31.1 percent 2,3,3,3-tetrafluoropropene (R-1234yf), a hydrofluoroolefin. Because of its reduced global warming potential (GWP), R-454B is intended to be an alternative to refrigerant R-410A in new equipment. R-454B has a GWP of 466, which is 78 percent lower than R-410A's GWP of 2088.

Life Cycle Climate Performance (LCCP) is an evolving method to evaluate the carbon footprint and global warming impact of heating, ventilation, air conditioning (AC), refrigeration systems, and potentially other applications such as thermal insulating foam. It is calculated as the sum of direct, indirect, and embodied greenhouse gas (GHG) emissions generated over the lifetime of the system “from cradle to grave,” i.e. from manufacture to disposal. Direct emissions include all climate forcing effects from the release of refrigerants into the atmosphere, including annual leakage and losses during service and disposal of the unit. Indirect emissions include the climate forcing effects of GHG emissions from the electricity powering the equipment. The embodied emissions include the climate forcing effects of the manufacturing processes, transport, and installation for the refrigerant, materials, and equipment, and for recycle or other disposal of the product at end of its useful life.

<span class="mw-page-title-main">2-Chloro-1,1-difluoroethylene</span> Chemical compound

2-Chloro-1,1-difluoroethene (also known as R 1122, u-HCFC-1122 or HCFO-1122) is a toxic unsaturated hydrochlorofluorocarbon which can be written as CF2=CHCl. The HCFO portion of the name stands for hydrochlorofluoroolefin. Another constitutional isomer of it, 1-chloro-1,2-difluoroethylene, is known as HCFO-1122a.

References

  1. Cynthia B. Rivela; Carmen M. Tovar; Mariano A. Teruel; Ian Barnes; Peter Wiesen; María B. Blanco (2019). "CFCs replacements: Reactivity and atmospheric lifetimes of a series of Hydrofluoroolefins towards OH radicals and Cl atoms". Chemical Physics Letters. 714: 190–196. Bibcode:2019CPL...714..190R. doi:10.1016/j.cplett.2018.10.078. S2CID   106382701.
  2. Wael A. Fouad; Lourdes F. Vega (2018). "Next generation of low global warming potential refrigerants: Thermodynamic properties molecular modeling". AIChE J. 64: 250–262. doi:10.1002/aic.15859.
  3. Toit, Louise du (2023-12-01), "Strengthening the Global Regulation of Hydrofluorocarbons under the Montreal Protocol", Reducing Emissions of Short-Lived Climate Pollutants, Brill Nijhoff, pp. 90–124, ISBN   978-90-04-68408-9 , retrieved 2024-04-25
  4. Pizzetti, Marianna; Petricci, Elena (May 2012). "Heterogeneous Catalysis Under Microwave Heating" (PDF). La Chimica & l'Industria. 4. Società Chimica Italiana: 78–81.
  5. HFO, i nuovi gas refirgerant
  6. Hydrofluoroolefins (HFOs) Archived 2012-02-04 at the Wayback Machine , European Fluorocarbons Technical Committee
  7. Honeywell Sells Novel Low-Global-Warming Blowing Agent To European Customers Archived 2016-03-03 at the Wayback Machine , Honeywell press release, Oct. 7, 2008
  8. Molés, Francisco; Navarro-Esbrí, Joaquín; Peris, Bernardo; Mota-Babiloni, Adrián; Barragán-Cervera, Ángel; Kontomaris, Konstantinos (Kostas) (2014). "Low GWP alternatives to HFC-245fa in Organic Rankine Cycles for low temperature heat recovery: HCFO-1233zd-E and HFO-1336mzz-Z". Applied Thermal Engineering. 71 (1): 204–212. doi:10.1016/j.applthermaleng.2014.06.055. hdl: 10234/125569 . ISSN   1359-4311.
  9. Navarro-Esbrí, Joaquín; Molés, Francisco; Peris, Bernardo; Mota-Babiloni, Adrián; Kontomaris, Konstantinos (2017). "Experimental study of an Organic Rankine Cycle with HFO-1336mzz-Z as a low global warming potential working fluid for micro-scale low temperature applications". Energy. 133: 79–89. doi:10.1016/j.energy.2017.05.092. hdl: 10234/169102 . ISSN   0360-5442.
  10. Molés, Francisco; Navarro-Esbrí, Joaquín; Peris, Bernardo; Mota-Babiloni, Adrián; Barragán-Cervera, Ángel; Kontomaris, Konstantinos (Kostas) (2017). "Thermo-economic evaluation of low global warming potential alternatives to HFC-245fa in Organic Rankine Cycles". Energy Procedia. 142: 1199–1205. doi: 10.1016/j.egypro.2017.12.381 . ISSN   1876-6102.
  11. Mateu-Royo, Carlos; Navarro-Esbrí, Joaquín; Mota-Babiloni, Adrián; Amat-Albuixech, Marta; Molés, Francisco (2019). "Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd(Z), HCFO-1233zd(E) and HFO-1336mzz(Z)". Applied Thermal Engineering. 152: 762–777. doi:10.1016/j.applthermaleng.2019.02.047. hdl: 10234/182332 . ISSN   1359-4311. S2CID   116253850.
  12. Mordock, Jeff. "Court ruling could imperil Chemours' most profitable product". delawareonline. Retrieved 2020-05-18.