2,3,3,3-Tetrafluoropropene

Last updated
2,3,3,3-Tetrafluoropropene
2,3,3,3-Tetrafluorpropene Structural Formulae V.1.svg
2,3,3,3-Tetrafluoropropene-3D-balls.png
Names
Preferred IUPAC name
2,3,3,3-Tetrafluoroprop-1-ene
Other names
HFO-1234yf; R1234yf; R-1234yf; 2,3,3,3-Tetrafluoropropylene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.104.879 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 468-710-7
PubChem CID
UNII
UN number 3161
  • InChI=1S/C3H2F4/c1-2(4)3(5,6)7/h1H2 Yes check.svgY
    Key: FXRLMCRCYDHQFW-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H2F4/c1-2(4)3(5,6)7/h1H2
    Key: FXRLMCRCYDHQFW-UHFFFAOYAB
  • C=C(F)C(F)(F)F
  • FC(=C)C(F)(F)F
Properties
C3H2F4
Molar mass 114 g/mol
AppearanceColorless gas
Density 1.1 g/cm3 at 25 °C (liquid); 4 (gas, relative, air is 1)
Boiling point −30 °C (−22 °F; 243 K)
198.2 mg/L at 24 °C, 92/69/EEC, A.6
log P 2.15, n-octanol/water, 92/69/EEC, A.8
Vapor pressure 6,067 hPa at 21.1 °C; 14,203 hPa at 54.4 °C
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-bottle.svg
H220, H280
P210, P260, P281, P308+P313, P410+P403
405 °C (761 °F; 678 K)
Explosive limits 6.2% vol.; 12.3% vol.
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

2,3,3,3-Tetrafluoropropene, HFO-1234yf, is a hydrofluoroolefin (HFO) with molecular formula CH2=CFCF3. Its primary application is as a refrigerant with low global warming potential (GWP). [1] [2]

Contents

As a refrigerant, it is designated R-1234yf [1] and marketed under the names Opteon YF by Chemours and as Solstice YF by Honeywell. [3] R-1234yf is also a component of zeotropic refrigerant blend R-454B.

HFO-1234yf has a GWP much less than carbon dioxide, [4] [2] itself 1,430 times less potent than R-134a. [5] For this reason, 2,3,3,3tetrafluoropropene is the pre-eminent replacement for R-134a in vehicular air conditioners. As of 2022, 90% of new U.S. vehicles are estimated to use HFO-1234yf. [6] Unlike previous vehicular refrigerants, 2,3,3,3tetrafluoropropene is flammable, but does not increase fire risk in internal combustion engines.

One drawback is it breaks down into short-chain perfluorinated carboxylic acids (PFCAs), which are persistent organic pollutants. [7]

Adoption by automotive industry

HFO-1234yf was developed by a team at DuPont, led by Barbara Haviland Minor, jointly with researchers at Honeywell. [8] [9] Their goal was to meet European directive 2006/40/EC, which went into effect in 2011 and required that all new car platforms for sale in Europe use a refrigerant in its AC system with a global warming potential (GWP) less than 150 times more potent than carbon dioxide. [10] [11] HFO-1234yf was initially considered to have a 100-year GWP of 4, and is now considered to have a 100-year GWP lower than 1. [2] [4]

Among the alternatives developed to comply with 2006/40/EC, HFO-1234yf had the lowest switching cost for automakers. [12] [13] It can be used as a "near drop-in replacement" for R-134a, [14] the previous automobile AC refrigerant, which has a 100-year GWP of 1430. [5] [15] HFO-1234yf can be handled in repair shops in the same way as R-134a, although it requires some different, specialized equipment to perform the service. One of the reasons for that is the flammability of HFO-1234yf. [16] Another issue affecting the compatibility between HFO-1234yf and R-134a-based systems is the choice of lubricating oil. [17]

On July 23, 2010, General Motors announced that it would introduce HFO-1234yf in 2013 Chevrolet, Buick, GMC, and Cadillac models in the U.S. [18] Shortly thereafter, Honeywell and DuPont announced that they would jointly build a manufacturing facility in Changshu, Jiangsu Province, China to produce HFO-1234yf. [19] In 2012, Cadillac produced the first American car using R-1234yf. [20] Since then, Chrysler, [21] GMC [22] and Ford [23] have all begun transitioning vehicles to R1234yf. [16]

Japanese automakers are also transitioning to R1234yf. Honda and Subaru began to introduce the new refrigerant with the 2017 models. [20] From 2017 to 2018, BMW changed all of its models to R-1234yf. As of 2018, 50% of new vehicles from original equipment manufacturers (OEMs) are estimated to use R-1234yf. [24]

In 2017, Honeywell opened a new plant in Geismar, Louisiana, to handle increased demand for the compound. [25] [26] Honeywell and DuPont hold most patents issued for HFO-1234yf [19] and remained the pre-eminent manufacturers in 2018. [27]

Flammability

Although the product is classified slightly flammable by ASHRAE, several years of testing by SAE International proved that the product could not be ignited under conditions normally experienced by a vehicle. [10] Tests conducted in 2008 indicated that ignition requires temperatures exceeding 900 °C (1,650 °F) and mixture with PAG oil. [28] Once in flame, 2,2,3,3trifluoropropene releases highly corrosive and toxic gaseous hydrogen fluoride and carbonyl fluoride. [29]

In August 2012, Mercedes-Benz showed that the substance ignited in simulated head-on collisions. A senior Daimler engineer who ran the tests, stated "We were frozen in shock, I am not going to deny it. We needed a day to comprehend what we had just seen." When researchers sprayed 2,2,3,3trifluoropropene and A/C compressor oil onto a car's hot engine, the mixture burned in two out of three times. [30] In September, Daimler issued a press release, [10] proposed a recall of cars using the refrigerant, and continued to use older refrigerants in its own designs. [31] The German automakers argued for development of carbon dioxide refrigerants, which they argued would be safer. [30]

In October 2012, SAE International established a new Cooperative Research Project, CRP1234-4, to extend its previous testing and investigate Daimler's claims. [10] The investigation concluded that R-1234yf did not increase the estimated risk of vehicle fire exposure, because "the refrigerant release testing completed by Daimler was unrealistic" and "created extreme conditions that favored ignition". [10] [32] Germany's Kraftfahrt-Bundesamt (KBA, Federal Motor Transport Authority)  [ de ] also conducted its own tests. In their August 2013 report to the European Union, the KBA concluded that while R-1234yf was potentially more hazardous than R-134a, it did not comprise a serious danger. [31]

Writing for Auto Service Professional, Gordon Jacques summarized the controversy:

"The flammability issue has attracted a lot of attention, prompting the industry to conduct some serious third-party testing. The bottom line is this: The refrigerant will burn, but it takes a lot of heat to ignite it and it burns slowly. Almost every other fluid under the hood will light more easily and burn hotter than R1234yf, so the industry has determined that with proper A/C system design, it does not increase the chances of fire in the vehicle." [16]

Mixing HFO-1234yf with 10–11% R-134A is in development to produce a hybrid gas under review by ASHRAE for classification as A2L which is described as "virtually non-flammable". These gases are under review with the names of R451A and R451B. These mixes have GWP of ~147. [33]

Other additives have been proposed for lowering the flammability of HFO-1234yf, such as trifluoroiodomethane, which has a low GWP due to its short atmospheric lifetime, but is slightly mutagenic. [34]

In the environment

HFO-1234yf has been shown to atmospherically transform into trifluoroacetic acid (TFA), leading to a potential for wet and dry atmospheric deposition. [35] [36]

See also

Related Research Articles

<span class="mw-page-title-main">Chlorofluorocarbon</span> Class of organic compounds

Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are fully or partly halogenated hydrocarbons that contain carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F), produced as volatile derivatives of methane, ethane, and propane.

Isobutane, also known as i-butane, 2-methylpropane or methylpropane, is a chemical compound with molecular formula HC(CH3)3. It is an isomer of butane. Isobutane is a colorless, odorless gas. It is the simplest alkane with a tertiary carbon atom. Isobutane is used as a precursor molecule in the petrochemical industry, for example in the synthesis of isooctane.

Freon is a registered trademark of the Chemours Company and generic descriptor for a number of halocarbon products. They are stable, nonflammable, low toxicity gases or liquids which have generally been used as refrigerants and as aerosol propellants. These include chlorofluorocarbons and hydrofluorocarbons, both of which cause ozone depletion and contribute to global warming. 'Freon' is the brand name for the refrigerants R-12, R-13B1, R-22, R-410A, R-502, and R-503 manufactured by The Chemours Company, and so is not used to label all refrigerants of this type. They emit a strong smell similar to acetone.

<span class="mw-page-title-main">Refrigerant</span> Substance in a refrigeration cycle

A refrigerant is a working fluid used in the refrigeration cycle of air conditioning systems and heat pumps where in most cases they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated due to their toxicity, flammability and the contribution of CFC and HCFC refrigerants to ozone depletion and that of HFC refrigerants to climate change.

Difluoromethane, also called difluoromethylene, HFC-32Methylene Fluoride or R-32, is an organic compound of the dihalogenoalkane variety. It has the formula of CH2F2. It is a colorless gas in the ambient atmosphere and is slightly soluble in the water, with a high thermal stability. Due to the low melting and boiling point, (-136.0 °C and -51.6 °C respectively) contact with this compound may result in frostbite. In the United States, the Clean Air Act Section 111 on Volatile Organic Compounds (VOC) has listed difluoromethane as an exception (since 1997) from the definition of VOC due to its low production of tropospheric ozone. Difluoromethane is commonly used in endothermic processes such as refrigeration or air conditioning.

Dichlorodifluoromethane (R-12) is a colorless gas usually sold under the brand name Freon-12, and a chlorofluorocarbon halomethane (CFC) used as a refrigerant and aerosol spray propellant. In compliance with the Montreal Protocol, its manufacture was banned in developed countries in 1996, and in developing countries in 2010 out of concerns about its damaging effect on the ozone layer. Its only allowed usage is as a fire retardant in submarines and aircraft. It is soluble in many organic solvents. R-12 cylinders are colored white.

1,1,1,2-Tetrafluoroethane (also known as norflurane (INN), R-134a, Klea 134a, Freon 134a, Forane 134a, Genetron 134a, Green Gas, Florasol 134a, Suva 134a, HFA-134a, or HFC-134a) is a hydrofluorocarbon (HFC) and haloalkane refrigerant with thermodynamic properties similar to R-12 (dichlorodifluoromethane) but with insignificant ozone depletion potential and a lower 100-year global warming potential (1,430, compared to R-12's GWP of 10,900). It has the formula CF3CH2F and a boiling point of −26.3 °C (−15.34 °F) at atmospheric pressure. R-134a cylinders are colored light blue. A phaseout and transition to HFO-1234yf and other refrigerants, with GWPs similar to CO2, began in 2012 within the automotive market.

<span class="mw-page-title-main">1,1-Difluoroethane</span> Chemical compound

1,1-Difluoroethane, or DFE, is an organofluorine compound with the chemical formula C2H4F2. This colorless gas is used as a refrigerant, where it is often listed as R-152a (refrigerant-152a) or HFC-152a (hydrofluorocarbon-152a). It is also used as a propellant for aerosol sprays and in gas duster products. As an alternative to chlorofluorocarbons, it has an ozone depletion potential of zero, a lower global warming potential (124) and a shorter atmospheric lifetime (1.4 years).

R-410A, sold under the trademarked names AZ-20, EcoFluor R410, Forane 410A, Genetron R410A, Puron, and Suva 410A, is a zeotropic but near-azeotropic mixture of difluoromethane (CH2F2, called R-32) and pentafluoroethane (CHF2CF3, called R-125) that is used as a refrigerant in air conditioning and heat pump applications. R-410A cylinders were colored rose but are no longer specially color-coded, now bearing a standard light gray color.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

Natural refrigerants are considered substances that serve as refrigerants in refrigeration systems. They are alternatives to synthetic refrigerants such as chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC) based refrigerants. Unlike other refrigerants, natural refrigerants can be found in nature and are commercially available thanks to physical industrial processes like fractional distillation, chemical reactions such as Haber process and spin-off gases. The most prominent of these include various natural hydrocarbons, carbon dioxide, ammonia, and water. Natural refrigerants are preferred actually in new equipment to their synthetic counterparts for their presumption of higher degrees of sustainability. With the current technologies available, almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.

<span class="mw-page-title-main">Air Conditioning, Heating and Refrigeration Institute</span> North American trade association

The Air Conditioning, Heating, and Refrigeration Institute (AHRI), formed in 2008 by a merger of the Air-Conditioning and Refrigeration Institute (ARI) and the Gas Appliance Manufacturers Association (GAMA), is a North American trade association of manufacturers of air conditioning, heating, and commercial refrigeration equipment.

<span class="mw-page-title-main">Automotive air conditioning</span> System to cool the air in a vehicle

Automotive air conditioning systems use air conditioning to cool the air in a vehicle.

<span class="mw-page-title-main">Hydrofluoroolefin</span> Class of chemical compounds

Hydrofluoroolefins (HFOs) are unsaturated organic compounds composed of hydrogen, fluorine and carbon. These organofluorine compounds are of interest as refrigerants. Unlike traditional hydrofluorocarbons (HFCs) and chlorofluorocarbons (CFCs), which are saturated, HFOs are olefins, otherwise known as alkenes.

<i>trans</i>-1,3,3,3-Tetrafluoropropene Chemical compound

trans-1,3,3,3-Tetrafluoropropene (HFO-1234ze(E), R-1234ze(E)) is a hydrofluoroolefin. It was developed as a "fourth generation" refrigerant to replace fluids such as R-134a, as a blowing agent for foam and aerosol applications, and in air horns and gas dusters. The use of R-134a is being phased out because of its high global warming potential (GWP). HFO-1234ze(E) itself has zero ozone-depletion potential (ODP=0), a very low global warming potential (GWP < 1 ), even lower than CO2, and it is classified by ANSI/ASHRAE as class A2L refrigerant (lower flammability and lower toxicity).

Barbara Haviland Minor is an American chemical engineer, known for the development of refrigerants. She was technical leader for chemical company DuPont in the development of R-1234yf, a refrigerant which, as of 2018, was used in 50% of all new vehicles produced by original equipment manufacturers, and which represented an important contribution to countering global warming.

R-454B, also known by the trademarked names Opteon XL41, Solstice 454B, and Puron Advance, is a zeotropic blend of 68.9 percent difluoromethane (R-32), a hydrofluorocarbon, and 31.1 percent 2,3,3,3-tetrafluoropropene (R-1234yf), a hydrofluoroolefin. Because of its reduced global warming potential (GWP), R-454B is intended to be an alternative to refrigerant R-410A in new equipment. R-454B has a GWP of 466, which is 78 percent lower than R-410A's GWP of 2088.

Life Cycle Climate Performance (LCCP) is an evolving method to evaluate the carbon footprint and global warming impact of heating, ventilation, air conditioning (AC), refrigeration systems, and potentially other applications such as thermal insulating foam. It is calculated as the sum of direct, indirect, and embodied greenhouse gas (GHG) emissions generated over the lifetime of the system “from cradle to grave,” i.e. from manufacture to disposal. Direct emissions include all climate forcing effects from the release of refrigerants into the atmosphere, including annual leakage and losses during service and disposal of the unit. Indirect emissions include the climate forcing effects of GHG emissions from the electricity powering the equipment. The embodied emissions include the climate forcing effects of the manufacturing processes, transport, and installation for the refrigerant, materials, and equipment, and for recycle or other disposal of the product at end of its useful life.

The Significant New Alternatives Policy is a program of the EPA to determine acceptable chemical substitutes, and establish which are prohibited or regulated by the EPA. It also establishes a program by which new alternatives may be accepted, and promulgates timelines to the industry regarding phase-outs of substitutes.

References

  1. 1 2 Sciance, Fred (October 29, 2013). "The Transition from HFC- 134a to a Low -GWP Refrigerant in Mobile Air Conditioners HFO -1234yf" (PDF). General Motors Public Policy Center. Retrieved 1 August 2018.
  2. 1 2 3 "IPCC confirms HFO GWPs are less than 1". Cooling Post. 3 Feb 2014. Retrieved 26 July 2018.
  3. "Honeywell and Chemours Announce New Manufacturing Plants for HFO 1234yf". Aspen Refrigerants. June 12, 2017. Archived from the original on 4 August 2020. Retrieved 26 July 2018.
  4. 1 2 Scientific Assessment of Ozone Depletion: 2014 Full Report. World Meteorological Organization Global Ozone Research and Monitoring Project—Report No. 55. 2014. p. 551.
  5. 1 2 P. Forster; V. Ramaswamy; P. Artaxo; T. Berntsen; R. Betts; D.W. Fahey; J. Haywood; J. Lean; D.C. Lowe; G. Myhre; J. Nganga; R. Prinn; G. Raga; M. Schulz; R. Van Dorland (2007). "Chapter 2: Changes in atmospheric constituents and in radiative forcing". In Solomon, S.; Miller, H.L.; Tignor, M.; Averyt, K.B.; Marquis, M.; Chen, Z.; Manning, M.; Qin, D. (eds.). Climate Change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Archived from the original on 1 December 2016. Retrieved 9 October 2016.
  6. "StackPath". www.vehicleservicepros.com. 23 March 2022. Retrieved 2022-05-28.
  7. Wang, Ziyuan; Wang, Yuhang; Li, Jianfeng; Henne, Stephan; Zhang, Boya; Hu, Jianxin; Zhang, Jianbo (30 January 2018). "Impacts of the Degradation of 2,3,3,3-Tetrafluoropropene into Trifluoroacetic Acid from Its Application in Automobile Air Conditioners in China, the United States, and Europe". Environmental Science & Technology. 52 (5): 2819–2826. Bibcode:2018EnST...52.2819W. doi:10.1021/acs.est.7b05960. PMID   29381347.
  8. "Recognizing excellence: Development of HFO-1234yf as the next generation refrigerant for the automotive industry" (PDF). 2010 DuPont Excellence Awards Sustainable Growth. 2010. p. 3. Retrieved 31 July 2018.
  9. "DuPont Names Seven New DuPont Fellows". DuPont Media Center (Press release). July 17, 2014. Archived from the original on 30 July 2018. Retrieved 30 July 2018.
  10. 1 2 3 4 5 Lewandowski, Thomas A. (July 24, 2013). "Additional risk assessment of alternative refrigerant R-1234yf prepared for SAE International cooperative research program CRP1234-4" (PDF). SAE International. Retrieved 26 July 2018.
  11. "Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 70/156/EEC". EFCTC. Archived from the original on 26 July 2018. Retrieved 26 July 2018.
  12. Ansari, Naushad A.; Yadav, Bipin; Kumar, Jitendra (August 2013). "Theoretical exergy analysis of HFO-1234yf and HFO-1234ze as an alternative replacement of HFC-134a in simple vapour compression refrigeration system". International Journal of Scientific & Engineering Research. 4 (8). CiteSeerX   10.1.1.415.9796 .
  13. "HFO-1234yf, New Dawn of Refrigerant Alternatives". JARN: Japan Air Conditioning, Heating & Refrigeration News (Press release). April 25, 2008. pp. 1, 6, 24. Retrieved 1 August 2018.
  14. "Honeywell's low-global-warming refrigerant for vehicles approved for import, use by Japan regulators". Honeywell (Press release). August 4, 2009. Retrieved 26 July 2018.
  15. "Air conditioning in new vehicle models requires a greener gas". Autodata. 2017. Retrieved 26 July 2018.
  16. 1 2 3 Gordon, Jacques (April 12, 2017). "Real world experience with R1234yf: The new refrigerant is finally here; are you ready?". Auto Service Professional. Retrieved 26 July 2018.
  17. Johnson, Alec (October 13, 2017). "Understanding refrigerant oils". Refrigerant HQ. Retrieved 26 July 2018.
  18. "GM first to market greenhouse gas-friendly air conditioning refrigerant in U.S." GM Corporate Newsroom (Press release). 2010-07-23. Retrieved 26 July 2018.
  19. 1 2 "Automakers Go HFO", Chemical & Engineering News , July 26, 2010
  20. 1 2 Schaeber, Steve (February 27, 2017). "R-1234yf at the 2017 PHL Auto Show". MACS Worldwide. Retrieved 26 July 2018.
  21. Zatz, David (October 1, 2013). "Chrysler adopting R1234YF". Allpar News (Press release). Retrieved 2018-06-16.
  22. "GMC hits the road with R-1234yf". MACS Worldwide. September 22, 2016. Retrieved 26 July 2018.
  23. Schaeber, Steve (August 17, 2016). "Ford dealers selling their first MPVs with R-1234yf". MACS Worldwide. Retrieved 26 July 2018.
  24. "Ask the expert: How many light duty OEs use HFO-1234yf refrigerant?". Vehicle Service Pros. May 15, 2018. Retrieved 26 July 2018.
  25. "Honeywell announces major investments to increase HFO-1234yf production in the United States". Honeywell (Press release). December 10, 2013. Archived from the original on 26 July 2018. Retrieved 26 July 2018.
  26. "Honeywell starts up $300 million automotive refrigerant production facility in Louisiana". Honeywell (Press release). May 16, 2017. Retrieved 26 July 2018.
  27. Marwa, Stefen (July 26, 2018). "HFO-1234yf market 2018 global share and projections: Honeywell and Chemours". The Aerospace News. Archived from the original on 26 July 2018. Retrieved 26 July 2018.
  28. Spatz, Mark; Minor, Barbara (July 2008). "HFO-1234yf Low GWP Refrigerant Update" (PDF).
  29. "Refreshingly cool, potentially toxic". Ludwig-Maximilians-Universität (LMU) Munich. 2014. Retrieved 26 July 2018.
  30. 1 2 Hetzner, Christiaan (December 12, 2012). "Coolant safety row puts the heat on Europe's carmakers". Reuters. Retrieved 26 July 2018.
  31. 1 2 Bolduc, Douglas A. (August 8, 2013). "German officials provide mixed ruling on Honeywell refrigerant Despite fire risk, agency does not seek recall of cars using HFO-1234yf". Automotive News Europe. Retrieved 26 July 2018.
  32. "A heated row over coolants". The Economist. August 31, 2013. Retrieved 26 July 2018.
  33. "R134a alternative is "virtually non-flammable"". Cooling Post. 30 November 2014. Retrieved 2017-06-09.
  34. "US6969701B2 Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane". Google patents. Retrieved 26 July 2018.
  35. Luecken, Deborah J.; Waterland, Robert L.; Papasavva, Stella; Taddonio, Kristen N.; Hutzell, William T.; Rugh, John P.; Andersen, Stephen O. (2010). "Ozone and TFA Impacts in North America from Degradation of 2,3,3,3-Tetrafluoropropene (HFO-1234yf), A Potential Greenhouse Gas Replacement". Environmental Science & Technology. 44 (1): 343–348. Bibcode:2010EnST...44..343L. doi:10.1021/es902481f. PMID   19994849.
  36. Hurley, M.D; Wallington, T.J; Javadi, M.S; Nielsen, O.J (2008). "Atmospheric chemistry of CF3CF=CH2: Products and mechanisms of Cl atom and OH radical initiated oxidation". Chemical Physics Letters. 450 (4–6): 263–267. doi:10.1016/j.cplett.2007.11.051.