Wind lens

Last updated
A wind lens in 2012. New wind-lens turbine (2012 version).JPG
A wind lens in 2012.

The wind lens is a modification on the wind turbine created by Professor Ohya from the Kyushu University as an attempt to be more efficient in production of electricity and less invasive to both humans and nature. While still in progress, the wind lens has a few changes in design which have led to impacts on how wind energy can be used and harnessed while changing how it impacts the world around us. A wind lens works like a ducted fan on an aircraft - it encircles the wind turbine, and speeds air up while protecting the blades from foreign object damage. Because of this, wind turbine efficiency can be drastically increased because of a simple installation of a wind lens.

Contents

Design

As the normal wind turbine does, the wind lens harnesses the energy of the wind but has a few modifications in order to increase efficiency as well as the impact on the environment.

Efficiency of power production

Studies have shown that the Wind Lens can have between two and five times more [1] output of power compared to the wind turbine due to the way it harnesses more wind.

The turbulence created as a result of the new configuration creates a low pressure zone behind the turbine, causing greater wind to pass through the turbine, and this, in turn, increases blade rotation and energy output. One way to get the most out of the wind input is by using a specially shaped tube around the blades. The tube, or shroud, is shaped as a diffuser which works like a magnifying glass for wind. The diffuser, which is smaller in the front and bigger in the back, catches more wind and focuses the wind towards the center blades which also leads to more efficient production of power.

In addition to the diffuser shape of the shroud, the back has a brim. This brim disturbs the wind flow which creates vortexes that cause a low pressure area to be formed behind the wind lens. The wind then flows to the low pressure area through the blades of the wind lens. The increased airflow through the blades leads to another reason of higher power production. [1]

The diffuser shape and the brim combined creates more efficiently placed and accurate airflow. This results in a higher amount of energy that is produced.

Impacts

Complaints about the wind turbine include the effect on the bird population, [2] sound production, [2] and radar interference [3] which limits all its placement in urban areas. The creators of the wind lens took a look at the problems and tried to solve them by adjusting the design.

Bird population [2]

Wind turbines have a detrimental effect on the bird population due to migration patterns and birds being caught and injured or even killed by the towering high speed blade. In order to fix this issue, the wind lens shroud that is around the blade, helps protect birds from entering the path of the blade and a mesh has been added to either end to prevent birds from being pulled into its blades. The addition of this mesh creates a negligible decrease in power production therefore having more benefits. In addition to the mesh, the wind lens is designed to avoid birds by making it a more compact and shorter, therefore making it possible for birds to easily fly over the wind lens unlike the wind turbine.

Sound production [2] [4]

Wind lenses have been made such that it produces less sound than wind turbines, making it possible for placement in urban areas without disturbing residents. The design of the blade is made so the angle and shape of the blade is able to cut through the wind more silently.

The biggest cause of the sound in the conventional wind turbine is the air drag at the tips of the blades but now the tips of the blades are covered and the more of the wind is more focused towards the center of the blades due to the diffuser shroud which means the air drag at the tips of the blades are minimized.

Radar interference [3]

Radar interference is consistently a problem with wind turbines which causes different groups to be against the use of wind farms near urban areas. After studies were performed to test the radar interference of wind lenses compared to the wind turbine, the wind lens had significantly less interference because of the smaller more compact design of the shroud itself as well as the shape and make of the shroud making it less of a problem with radar interference. [3]

Limitations

Despite the beneficial additions to the design, there are still limitations.

The wind lens requires far more materials compared to the current design of wind turbines. Such materials for the shroud as well as the mesh requires a great amount of energy and cost. [5]

While still producing less noise and interference, it will still cause disturbances until it becomes zero. [1] [3] [4]

The wind load on the wind lens is higher and therefore may be too heavy for the wind lens to maintain due to structural challenges. This means it may have a lot of power unused or that the wind lens is more prone to breaking. [6]

The idea is not anything new and previous testing has tried and failed, however other projects have never had large scale testing and have come to a stage this far with this much success. [5]

Application

The wind lens is being looked to as a way to increase the production of clean energy as well as an archetype for other types of clean energy.

The wind lens can replace the current production energy of fossil fuels which harms the environment and can be an alternative to the less efficient wind turbine since it is adaptable to more environments and produces higher amounts of energy.

Current projects

The wind lens is currently being adjusted and approved by testing it in multiple ways and at multiple places.

See also

Related Research Articles

<span class="mw-page-title-main">Turbine</span> Rotary mechanical device that extracts energy from a fluid flow

A turbine is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical power when combined with a generator. A turbine is a turbomachine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor. Early turbine examples are windmills and waterwheels.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Wind power</span> Electrical power generation from wind

Wind power is the use of wind energy to generate useful work. Historically, wind power was used by sails, windmills and windpumps, but today it is mostly used to generate electricity. This article deals only with wind power for electricity generation. Today, wind power is generated almost completely with wind turbines, generally grouped into wind farms and connected to the electrical grid.

<span class="mw-page-title-main">Ducted fan</span> Air moving arrangement

In aeronautics, a ducted fan is a thrust-generating mechanical fan or propeller mounted within a cylindrical duct or shroud. Other terms include ducted propeller or shrouded propeller. When used in vertical takeoff and landing (VTOL) applications it is also known as a shrouded rotor.

<span class="mw-page-title-main">Wind farm</span> Group of wind turbines

A wind farm or wind park, also called a wind power station or wind power plant, is a group of wind turbines in the same location used to produce electricity. Wind farms vary in size from a small number of turbines to several hundred wind turbines covering an extensive area. Wind farms can be either onshore or offshore.

<span class="mw-page-title-main">Turbomachinery</span> Machine for exchanging energy with a fluid

Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid.

<span class="mw-page-title-main">Airborne wind turbine</span> High-altitude flying turbine for generating electricity

An airborne wind turbine is a design concept for a wind turbine with a rotor supported in the air without a tower, thus benefiting from the higher velocity and persistence of wind at high altitudes, while avoiding the expense of tower construction, or the need for slip rings or yaw mechanism. An electrical generator may be on the ground or airborne. Challenges include safely suspending and maintaining turbines hundreds of meters off the ground in high winds and storms, transferring the harvested and/or generated power back to earth, and interference with aviation.

<span class="mw-page-title-main">Small wind turbine</span> Wind turbines of 500 W to 10 kW power

Small wind turbines, also known as micro wind turbines, generate electricity for small-scale use. These turbines are typically smaller than those found in wind farms. Small wind turbines often have passive yaw systems as opposed to active ones. They use a direct drive generator and use a tail fin to point into the wind, whereas larger turbines have geared powertrains that are actively pointed into the wind.

<span class="mw-page-title-main">Wind turbine design</span> Process of defining the form of wind turbine systems

Wind turbine design is the process of defining the form and configuration of a wind turbine to extract energy from the wind. An installation consists of the systems needed to capture the wind's energy, point the turbine into the wind, convert mechanical rotation into electrical power, and other systems to start, stop, and control the turbine.

<span class="mw-page-title-main">Unconventional wind turbines</span> Wind turbines of unconventional design

Unconventional wind turbines are those that differ significantly from the most common types in use.

<span class="mw-page-title-main">Burton Wold Wind Farm</span> Wind farm near Burton Latimer in Northamptonshire, UK

Burton Wold Wind Farm is a wind farm located near Burton Latimer in the English county of Northamptonshire, UK. The farm was developed by Your Energy Ltd, is owned by Mistral Windfarms and operated by Engineering Renewables Ltd. E.ON UK is buying the electricity output of the project under a long-term power purchase agreement. The farm is spread over three hectares. It has an installed capacity of 20 MW and generate on average around 40,000,000 units of electricity annually.

<span class="mw-page-title-main">Environmental impact of wind power</span>

The environmental impact of electricity generation from wind power is minor when compared to that of fossil fuel power. Wind turbines have some of the lowest global warming potential per unit of electricity generated: far less greenhouse gas is emitted than for the average unit of electricity, so wind power helps limit climate change. Wind power consumes no fuel, and emits no air pollution, unlike fossil fuel power sources. The energy consumed to manufacture and transport the materials used to build a wind power plant is equal to the new energy produced by the plant within a few months.

<span class="mw-page-title-main">Shrouded tidal turbine</span>

The shrouded tidal turbine is an emerging tidal stream technology that has a turbine enclosed in a venturi shaped shroud or duct (ventuduct), producing a sub atmosphere of low pressure behind the turbine. The venturi shrouded turbine is not subject to the Betz limit and allows the turbine to operate at higher efficiencies than the turbine alone by increasing the volume of the flow over the turbine. Claimed improvements vary, from 1.15 to 4 times higher power output than the same turbine minus the shroud. The Betz limit of 59.3% conversion efficiency for a turbine in an open flow still applies, but is applied to the much larger shroud cross-section rather than the small turbine cross-section.

<span class="mw-page-title-main">Wind turbine</span> Machine that converts wind energy into electrical energy

A wind turbine is a device that converts the kinetic energy of wind into electrical energy. As of 2020, hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels. One study claimed that, as of 2009, wind had the "lowest relative greenhouse gas emissions, the least water consumption demands and the most favorable social impacts" compared to photovoltaic, hydro, geothermal, coal and gas energy sources.

Compact Wind Acceleration Turbines (CWATs) are a class of wind turbine that uses structures to accelerate wind before it enters the wind-generating element. The concept of these structures has been around for decades but has not gained wide acceptance in the marketplace. In 2008, two companies targeting the mid-wind marketplace have received funding from venture capital. The first company to receive funding is Optiwind, which received its series A funding in April 2008, and the second company is Ogin, Inc., which also received its series A funding in April 2008. Optiwind is funded through Charles River Ventures and FloDesign is funded through Kleiner Perkins. Other CWATs under development include the WindTamer from AristaPower, WindCube, Innowind and Enflo turbines.

<span class="mw-page-title-main">Tidal farm</span>

A tidal farm is a group of multiple tidal stream generators assembled in the same location used for production of electric power, similar to that of a wind farm. The low-voltage powerlines from the individual units are then connected to a substation, where the voltage is stepped up with the use of a transformer for distribution through a high voltage transmission system.

<span class="mw-page-title-main">Tidal stream generator</span> Type of tidal power generation technology

A tidal stream generator, often referred to as a tidal energy converter (TEC), is a machine that extracts energy from moving masses of water, in particular tides, although the term is often used in reference to machines designed to extract energy from run of river or tidal estuarine sites. Certain types of these machines function very much like underwater wind turbines, and are thus often referred to as tidal turbines. They were first conceived in the 1970s during the oil crisis.

Vortex Bladeless Ltd. is a Spanish technology startup company that is developing a type of wind power generator without rotating blades or lubricants, unlike the more common wind turbines. Power is produced from resonant vibrations produced when wind passes the turbine and is deflected into vortices in a process called vortex shedding.

A diffuser-augmented wind turbine (DAWT) is a wind turbine modified with a cone-shaped wind diffuser that is used to increase the efficiency of converting wind power to electrical power. The increased efficiency is possible due to the increased wind speeds the diffuser can provide. In traditional bare turbines, the rotor blades are vertically mounted at the top of a support tower or shaft. In a DAWT, the rotor blades are mounted within the diffuser, which is then placed on the top of the support tower. Additional modifications can be made to the diffuser in order to further increase efficiency.

<span class="mw-page-title-main">Vertical-axis wind turbine</span> Type of wind turbine

A vertical-axis wind turbine (VAWT) is a type of wind turbine where the main rotor shaft is set transverse to the wind while the main components are located at the base of the turbine. This arrangement allows the generator and gearbox to be located close to the ground, facilitating service and repair. VAWTs do not need to be pointed into the wind, which removes the need for wind-sensing and orientation mechanisms. Major drawbacks for the early designs included the significant torque ripple during each revolution, and the large bending moments on the blades. Later designs addressed the torque ripple by sweeping the blades helically. Savonius vertical-axis wind turbines (VAWT) are not widespread, but their simplicity and better performance in disturbed flow-fields, compared to small horizontal-axis wind turbines (HAWT) make them a good alternative for distributed generation devices in an urban environment.

References

  1. 1 2 3 4 5 Ohya, Yuji; Karasudani, Takashi (2010-03-31). "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology". Energies. 3 (4): 634–649. doi: 10.3390/en3040634 . hdl: 2324/26424 .
  2. 1 2 3 4 Ohya, Yuji (November 2014). "A Highly Efficient Wind and Water Turbines With Wind-Lens Technology & Offshore Floating Renewable Energy Farm" (PDF). RIAM Kyushu. Kyushu University. Retrieved October 24, 2016.
  3. 1 2 3 4 Balleri, Alessio; Al-Armaghany, Allann; Griffiths, Hugh; Tong, Kenneth; Takashi, Matsuura (October 22, 2012). "The Radar Signature of the Wind Lens: a less disruptive wind turbine?" (PDF). Cranfield University. Retrieved October 24, 2016.
  4. 1 2 Takahashi, Shuhei; Hata, Yuya; Ohya, Yuji; Karasudani, Takashi; Uchida, Takanori (2012-12-13). "Behavior of the Blade Tip Vortices of a Wind Turbine Equipped with a Brimmed-Diffuser Shroud". Energies. 5 (12): 5229–5242. doi: 10.3390/en5125229 . hdl: 2324/26425 .
  5. 1 2 Anderson, Richard (2015-03-05). "Wind turbines take to the skies to seek out more power". BBC News. Retrieved 2016-11-06.
  6. 1 2 3 "Kyushu University RIAM Wind Engineering Section Homepage - Future of the Wind Lens". www.riam.kyushu-u.ac.jp. Retrieved 2016-11-06.
  7. "Kettering University researchers explore optimizing wind turbines with new propeller design". Kettering University News. Retrieved 2016-11-06.