Cross-flow filtration

Last updated
Diagram of cross-flow filtration Cross-flow.svg
Diagram of cross-flow filtration

In chemical engineering, biochemical engineering and protein purification, crossflow filtration [1] (also known as tangential flow filtration [2] ) is a type of filtration (a particular unit operation). Crossflow filtration is different from dead-end filtration in which the feed is passed through a membrane or bed, the solids being trapped in the filter and the filtrate being released at the other end. Cross-flow filtration gets its name because the majority of the feed flow travels tangentially across the surface of the filter, rather than into the filter. [1] The principal advantage of this is that the filter cake (which can blind the filter) is substantially washed away during the filtration process, increasing the length of time that a filter unit can be operational. It can be a continuous process, unlike batch-wise dead-end filtration.

Contents

Diagram of cross-flow filtration Crossflow-filtration.svg
Diagram of cross-flow filtration

This type of filtration is typically selected for feeds containing a high proportion of small particle size solids (where the permeate is of most value) because solid material can quickly block (blind) the filter surface with dead-end filtration. Industrial examples of this include the extraction of soluble antibiotics from fermentation liquors.

The main driving force of cross-flow filtration process is transmembrane pressure. Transmembrane pressure is a measure of pressure difference between two sides of the membrane. During the process, the transmembrane pressure might decrease due to an increase of permeate viscosity, therefore filtration efficiency decreases and can be time-consuming for large-scale processes. This can be prevented by diluting permeate or increasing flow rate of the system.

Operation

Ceramic membrane for industrial cross-flow filtration Ceramic membrane (crossflow filtration).jpg
Ceramic membrane for industrial cross-flow filtration

In crossflow filtration, the feed is passed across the filter membrane (tangentially) at positive pressure relative to the permeate side. A proportion of the material which is smaller than the membrane pore size passes through the membrane as permeate or filtrate; everything else is retained on the feed side of the membrane as retentate.

With crossflow filtration the tangential motion of the bulk of the fluid across the membrane causes trapped particles on the filter surface to be rubbed off. This means that a crossflow filter can operate continuously at relatively high solids loads without blinding.

Benefits over conventional filtration

Industrial applications

Filtration unit for industrial cross-flow filtration Filtration unit (crossflow filtration).jpg
Filtration unit for industrial cross-flow filtration

Cross-flow membrane filtration technology has been used widely in industry around the globe. Filtration membranes can be polymeric or ceramic, depending upon the application. The principles of cross-flow filtration are used in reverse osmosis, nanofiltration, ultrafiltration and microfiltration. When purifying water, it can be very cost-effective in comparison to the traditional evaporation methods.

In protein purification, the term tangential flow filtration (TFF) is used to describe cross-flow filtration with membranes. The process can be used at different stages during purification, depending on the type of membrane selected. [2]

In the photograph of an industrial filtration unit (right), it is possible to see that the recycle pipework is considerably larger than either the feed pipework (vertical pipe on the right hand side) or the permeate pipework (small manifolds near to the rows of white clamps). These pipe sizes are directly related to the proportion of liquid that flows through the unit. A dedicated pump is used to recycle the feed several times around the unit before the solids-rich retentate is transferred to the next part of the process.

Techniques to improve performance

Backwashing

In backwashing, the transmembrane pressure is periodically inverted by the use of a secondary pump, so that permeate flows back into the feed, lifting the fouling layer from the surface of the membrane. Backwashing is not applicable to spirally wound membranes and is not a general practice in most applications. (See Clean-in-place) [4]

Alternating tangential flow (ATF)

A diaphragm pump is used to produce an alternating tangential flow, helping to dislodge retained particles and prevent membrane fouling. Repligen is the largest producer of ATF systems.

Clean-in-place (CIP)

Clean-in-place systems are typically used to remove fouling from membranes after extensive use. The CIP process may use detergents, reactive agents such as sodium hypochlorite and acids and alkalis such as citric acid and sodium hydroxide (NaOH). Sodium hypochlorite (bleach) must be removed from the feed in some membrane plants. Bleach oxidizes thin-film membranes. Oxidation will degrade the membranes to a point where they will no longer perform at rated rejection levels and have to be replaced. Bleach can be added to a sodium hydroxide CIP during an initial system start-up before spirally-wound membranes are loaded into the plant to help disinfect the system. Bleach is also used to CIP perforated stainless steel (Graver) membranes, as their tolerance for sodium hypochlorite is much higher than a spirally-wound membrane. Caustics and acids are most often used as primary CIP chemicals. Caustic removes organic fouling and acid removes minerals. Enzyme solutions are also used in some systems for helping remove organic fouling material from the membrane plant. The pH and temperature are important to a CIP program. If pH and temperature are too high the membrane will degrade and flux performance will suffer. If pH and temperature are too low, the system simply will not be cleaned properly. Every application has different CIP requirements. e.g. a dairy reverse osmosis (RO) plant most likely will require a more rigorous CIP program than a water purification RO plant. Each membrane manufacturer has their own guidelines for CIP procedures for their product.

Concentration

The volume of the fluid is reduced by allowing permeate flow to occur. Solvent, solutes, and particles smaller than the membrane pore size pass through the membrane, while particles larger than the pore size are retained, and thereby concentrated. In bioprocessing applications, concentration may be followed by diafiltration.

Diafiltration

In order to effectively remove permeate components from the slurry, fresh solvent may be added to the feed to replace the permeate volume, at the same rate as the permeate flow rate, such that the volume in the system remains constant. This is analogous to the washing of filter cake to remove soluble components. [4] Dilution and re-concentration is sometimes also referred to as "diafiltration".

Process flow disruption (PFD)

A technically simpler approach than backwashing is to set the transmembrane pressure to zero by temporarily closing off the permeate outlet, which increases the attrition of the fouling layer without the need for a second pump. PFD is not as effective as backwashing in removing fouling, but can be advantageous.

Flow rate calculation

The flux or flow rate in cross-flow filtration systems is given by the equation: [4]

in which:

Note: and include the inverse of the membrane surface area in their derivation; thus, flux increases with increasing membrane area.

See also

Related Research Articles

<span class="mw-page-title-main">Filtration</span> Process that separates solids from fluids


Filtration is a physical separation process that separates solid matter and fluid from a mixture using a filter medium that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter medium are described as oversize and the fluid that passes through is called the filtrate. Oversize particles may form a filter cake on top of the filter and may also block the filter lattice, preventing the fluid phase from crossing the filter, known as blinding. The size of the largest particles that can successfully pass through a filter is called the effective pore size of that filter. The separation of solid and fluid is imperfect; solids will be contaminated with some fluid and filtrate will contain fine particles. Filtration occurs both in nature and in engineered systems; there are biological, geological, and industrial forms.

<span class="mw-page-title-main">Water purification</span> Process of removing impurities from water

Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids, and gases from water. The goal is to produce water that is fit for specific purposes. Most water is purified and disinfected for human consumption, but water purification may also be carried out for a variety of other purposes, including medical, pharmacological, chemical, and industrial applications. The history of water purification includes a wide variety of methods. The methods used include physical processes such as filtration, sedimentation, and distillation; biological processes such as slow sand filters or biologically active carbon; chemical processes such as flocculation and chlorination; and the use of electromagnetic radiation such as ultraviolet light.

Ultrafiltration (UF) is a variety of membrane filtration in which forces such as pressure or concentration gradients lead to a separation through a semipermeable membrane. Suspended solids and solutes of high molecular weight are retained in the so-called retentate, while water and low molecular weight solutes pass through the membrane in the permeate (filtrate). This separation process is used in industry and research for purifying and concentrating macromolecular (103–106 Da) solutions, especially protein solutions.

Microfiltration is a type of physical filtration process where a contaminated fluid is passed through a special pore-sized membrane filter to separate microorganisms and suspended particles from process liquid. It is commonly used in conjunction with various other separation processes such as ultrafiltration and reverse osmosis to provide a product stream which is free of undesired contaminants.

<span class="mw-page-title-main">Media filter</span>

A media filter is a type of filter that uses a bed of sand, peat, shredded tires, foam, crushed glass, geo-textile fabric, anthracite, crushed granite or other material to filter water for drinking, swimming pools, aquaculture, irrigation, stormwater management, oil and gas operations, and other applications.

<span class="mw-page-title-main">Sand filter</span> Water filtration device

Sand filters are used as a step in the water treatment process of water purification.

<span class="mw-page-title-main">Backwashing (water treatment)</span>

In terms of water treatment, including water purification and sewage treatment, backwashing refers to pumping water backwards through the filters media, sometimes including intermittent use of compressed air during the process. Backwashing is a form of preventive maintenance so that the filter media can be reused. In water treatment plants, backwashing can be an automated process that is run by local programmable logic controllers (PLCs). The backwash cycle is triggered after a set time interval, when the filter effluent turbidity is greater than a treatment guideline or when the differential pressure across the filter exceeds a set value.

Nanofiltration is a membrane filtration process that uses nanometer sized pores through which particles smaller than about 1–10 nanometers pass through the membrane. Nanofiltration membranes have pore sizes of about 1–10 nanometers, smaller than those used in microfiltration and ultrafiltration, but a slightly bigger than those in reverse osmosis. Membranes used are predominantly polymer thin films. It is used to soften, disinfect, and remove impurities from water, and to purify or separate chemicals such as pharmaceuticals.

<span class="mw-page-title-main">Filter press</span>

An industrial filter press is a tool used in separation processes, specifically to separate solids and liquids. The machine stacks many filter elements and allows the filter to be easily opened to remove the filtered solids, and allows easy cleaning or replacement of the filter media.

Membrane bioreactors are combinations of some membrane processes like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. These technologies are now widely used for municipal and industrial wastewater treatment. The two basic membrane bioreactor configurations are the submerged membrane bioreactor and the side stream membrane bioreactor. In the submerged configuration, the membrane is located inside the biological reactor and submerged in the wastewater, while in a side stream membrane bioreactor, the membrane is located outside the reactor as an additional step after biological treatment.

<span class="mw-page-title-main">Membrane fouling</span>

Membrane fouling is a process whereby a solution or a particle is deposited on a membrane surface or in membrane pores in a processes such as in a membrane bioreactor, reverse osmosis, forward osmosis, membrane distillation, ultrafiltration, microfiltration, or nanofiltration so that the membrane's performance is degraded. It is a major obstacle to the widespread use of this technology. Membrane fouling can cause severe flux decline and affect the quality of the water produced. Severe fouling may require intense chemical cleaning or membrane replacement. This increases the operating costs of a treatment plant. There are various types of foulants: colloidal, biological, organic and scaling.

Depth filters are filters that use a porous filtration medium to retain particles throughout the medium, rather than just on the surface of the medium. Depth filtration, typified by multiple porous layers with depth, is used to capture the solid contaminants from the liquid phase. These filters are commonly used when the fluid to be filtered contains a high load of particles because, relative to other types of filters, they can retain a large mass of particles before becoming clogged.

Reverse osmosis (RO) is a water purification process that uses a semi-permeable membrane to separate water molecules from other substances. RO applies pressure to overcome osmotic pressure that favors even distributions. RO can remove dissolved or suspended chemical species as well as biological substances, and is used in industrial processes and the production of potable water. RO retains the solute on the pressurized side of the membrane and the purified solvent passes to the other side. It relies on the relative sizes of the various molecules to decide what passes through. "Selective" membranes reject large molecules, while accepting smaller molecules.

A vacuum ceramic filter is designed to separate liquids from solids for dewatering of ore concentrates purposes. The device consists of a rotator, slurry tank, ceramic filter plate, distributor, discharge scraper, cleaning device, frame, agitating device, pipe system, vacuum system, automatic acid dosing system, automatic lubricating system, valve and discharge chute. The operation and construction principle of vacuum ceramic filter resemble those of a conventional disc filter, but the filter medium is replaced by a finely porous ceramic disc. The disc material is inert, has a long operational life and is resistant to almost all chemicals. Performance can be optimized by taking into account all those factors which affect the overall efficiency of the separation process. Some of the variables affecting the performance of a vacuum ceramic filter include the solid concentration, speed rotation of the disc, slurry level in the feed basin, temperature of the feed slurry, and the pressure during dewatering stages and filter cake formation.

Electrofiltration is a method that combines membrane filtration and electrophoresis in a dead-end process.

<span class="mw-page-title-main">Membrane</span> Thin, film-like structure separating two fluids, acting as a selective barrier

A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Biological membranes include cell membranes ; nuclear membranes, which cover a cell nucleus; and tissue membranes, such as mucosae and serosae. Synthetic membranes are made by humans for use in laboratories and industry.

Membrane technology encompasses the scientific processes used in the construction and application of membranes. Membranes are used to facilitate the transport or rejection of substances between mediums, and the mechanical separation of gas and liquid streams. In the simplest case, filtration is achieved when the pores of the membrane are smaller than the diameter of the undesired substance, such as a harmful microorganism. Membrane technology is commonly used in industries such as water treatment, chemical and metal processing, pharmaceuticals, biotechnology, the food industry, as well as the removal of environmental pollutants.

The peeler centrifuge is a device that performs by rotating filtration basket in an axis. A centrifuge follows on the principle of centrifugal force to separate solids from liquids by density difference. High rotation speed provides high centrifugal force that allows the suspended solid in feed to settle on the inner surface of basket. There are three kinds of centrifuge, horizontal, vertical peeler centrifuge and siphon peeler centrifuge. These classes of instrument apply to various areas such as fertilisers, pharmaceutical, plastics and food including artificial sweetener and modified starch.

Anaerobic membrane bioreactor or AnMBR is the name of a technology utilized in wastewater treatment. It is a technology in membrane filtration for biomass retention. AnMBR works by using a membrane bioreactor (MBR) in a anaerobic environment. Anaerobic bacteria and archaea convert organic materials into carbon dioxide (CO2) and methane (CH4). The sewage is filtered and separated by membranes leaving the effluent and sludge apart. The produced biogas can later be combusted to generate heat or electricity. It can also be upgraded (purified) into Renewable natural gas of household quality. AnMBR is considered to be a sustainable alternative for sewage treatment because the energy that can be generated by methane combustion can exceed the energy required for maintaining the process.

Pile Cloth Media Filtration is a mechanical process for the separation of organic and inorganic solids from liquids. It belongs to the processes of surface filtration and cake filtration where, in addition to the sieve effect, real filtration effects occur over the depth of the pile layer. Pile Cloth Media Filtration represents a branch of cloth filtration processes and is used for water and wastewater treatment in medium and large scale. In Pile Cloth Media Filtration, three-dimensional textile fabrics are used as filter media. During the filter cleaning of the pile layer the filtration process continues and is not interrupted.

References

  1. 1 2 Koros WJ, Ma YH, Shimidzu T (June 1996). "Terminology for membranes and membrane processes (IUPAC)" (PDF). Pure Appl. Chem. 86 (7): 1479–1489. doi:10.1351/pac199668071479. S2CID   97076769.
  2. 1 2 Millipore Technical Library: Protein Concentration and Diafiltration by Tangential Flow Filtration
  3. Bertera R, Steven H, Metcalfe M (June 1984). "Development Studies of crossflow filtration". The Chemical Engineer. 401: 10.
  4. 1 2 3 JF Richardson; JM Coulson; JH Harker; JR Backhurst (2002). Coulson and Richardson's Chemical Engineering (Volume 2) (5th ed.). Butterworth-Heinemann. ISBN   0-7506-4445-1.