Archaeorhizomycetes

Last updated

Archaeorhizomycetes
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Subdivision: Taphrinomycotina
Class: Archaeorhizomycetes
Rosling and T.James
Order: Archaeorhizomycetales
Rosling and T.James
Family: Archaeorhizomycetaceae
Rosling and T.James
Genus: Archaeorhizomyces
Rosling and T.James
Type species
Archaeorhizomyces finlayi
Rosling and T.James (2011)
Archaeorhizomycetes under electron microscope Archaeorhizomycetes.jpg
Archaeorhizomycetes under electron microscope

Archaeorhizomycetes is a class of fungi in the subdivision Taphrinomycotina of the Ascomycota. So far, the class has only one described order, Archaeorhizomycetales, family, Archaeorhizomycetaceae, and genus, Archaeorhizomyces. The class was first described by a team led by Anna Rosling in 2011. Species in the class are globally distributed, and grow in soil and around roots. [1] [2] Specific known host trees of various Archaeorhizomyces species include hemlock, spruce, pine and heather, but other species colonise hardwoods generally. [1]

The precise ecological role of the taxa is uncertain. While originally found to be seasonal, suggesting it was dependent on carbon compounds from the roots, when grown in culture, Archaeorhizomyces finlayi, was shown to be able to grow using either glucose or cellulose as its sole source of carbon, suggesting "that it may be involved in decomposition and not require direct carbon transfer from the plant through symbiosis". [1] While the ecological role is not yet clear, preliminary tests suggest that the fungus is neither a pathogen nor an ectomycorrhizal symbiont. [3]

Prior to the description by Rosling and colleagues, Archaeorhizomycetes was referred to as Soil Clone Group 1 or SCGI after it was originally discovered tundra soils and reported in 2003 by Schadt et al. [4] The taxa were only known from ribosomal DNA sequencing but it had been found independently in ecological studies of soil in more than fifty cases worldwide using three different gene regions. [5] However, neither fruit bodies nor spores had been observed. [1]

The name Archaeorhizomyces comes from the Greek arkhaio-, meaning ancient, which is in reference to the basality of the fungus, rhiza, in reference to roots, and mykes, in reference to fungi. Archaeorhizomyces finlayi , (named in honour of Roger D. Finlay) was the first species described. It is known from Scandinavia and North America. [1] A second species Archaeorhizomyces borealis was described in 2014 together with an estimate that the class may consist of close to 500 species based on sequences available in public databases. [6]

Related Research Articles

<span class="mw-page-title-main">Mycelium</span> Vegetative part of a fungus

Mycelium is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. Its normal form is that of branched, slender, entangled, anastomosing, hyaline threads. Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates into a monokaryotic mycelium, which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as mushrooms. A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in Armillaria.

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, the plant root system and its surroundings. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Lichen</span> Symbiosis of fungi with algae or cyanobacteria

A lichen is a hybrid colony of algae or cyanobacteria living symbiotically among filaments of multiple fungi species, along with a yeast embedded in the cortex or "skin", in a mutualistic relationship.

<span class="mw-page-title-main">Endophyte</span> Endosymbiotic bacterium or fungus

An endophyte is an endosymbiont, often a bacterium or fungus, that lives within a plant for at least part of its life cycle without causing apparent disease. Endophytes are ubiquitous and have been found in all species of plants studied to date; however, most of the endophyte/plant relationships are not well understood. Some endophytes may enhance host growth and nutrient acquisition and improve the plant's ability to tolerate abiotic stresses, such as drought, and decrease biotic stresses by enhancing plant resistance to insects, pathogens and herbivores. Although endophytic bacteria and fungi are frequently studied, endophytic archaea are increasingly being considered for their role in plant growth promotion as part of the core microbiome of a plant.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza. They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

<span class="mw-page-title-main">Glomeromycota</span> Phylum of fungi

Glomeromycota are one of eight currently recognized divisions within the kingdom Fungi, with approximately 230 described species. Members of the Glomeromycota form arbuscular mycorrhizas (AMs) with the thalli of bryophytes and the roots of vascular land plants. Not all species have been shown to form AMs, and one, Geosiphon pyriformis, is known not to do so. Instead, it forms an endocytobiotic association with Nostoc cyanobacteria. The majority of evidence shows that the Glomeromycota are dependent on land plants for carbon and energy, but there is recent circumstantial evidence that some species may be able to lead an independent existence. The arbuscular mycorrhizal species are terrestrial and widely distributed in soils worldwide where they form symbioses with the roots of the majority of plant species (>80%). They can also be found in wetlands, including salt-marshes, and associated with epiphytic plants.

<span class="mw-page-title-main">Saccharomycotina</span> Subdivision of fungi

Saccharomycotina is a subdivision (subphylum) of the division (phylum) Ascomycota in the kingdom Fungi. It comprises most of the ascomycete yeasts. The members of Saccharomycotina reproduce by budding and they do not produce ascocarps.

<i>Glomus</i> (fungus) Genus of arbuscular mycorrhizal fungi

Glomus is a genus of arbuscular mycorrhizal (AM) fungi, and all species form symbiotic relationships (mycorrhizae) with plant roots. Glomus is the largest genus of AM fungi, with ca. 85 species described, but is currently defined as non-monophyletic.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae, and either Protista or Protozoa and Chromista.

<span class="mw-page-title-main">Mycoforestry</span> Permaculture forest management system using fungi

Mycoforestry is an ecological forest management system implemented to enhance forest ecosystems and plant communities, by introducing the mycorrhizal and saprotrophic fungi. Mycoforestry is considered a type of permaculture and can be implemented as a beneficial component of an agroforestry system. It can enhance the yields of tree crops and produce edible mushrooms, an economically valuable product. By integrating plant-fungal associations into a forestry management system, native forests can be preserved, wood waste can be recycled back into the ecosystem, carbon sequestration can be increased, planted restoration sites are enhanced, and the sustainability of forest ecosystems are improved. Mycoforestry is an alternative to the practice of clearcutting, which removes dead wood from forests, thereby diminishing nutrient availability and reducing soil depth.

<span class="mw-page-title-main">Plant use of endophytic fungi in defense</span>

Plant use of endophytic fungi in defense occurs when endophytic fungi, which live symbiotically with the majority of plants by entering their cells, are utilized as an indirect defense against herbivores. In exchange for carbohydrate energy resources, the fungus provides benefits to the plant which can include increased water or nutrient uptake and protection from phytophagous insects, birds or mammals. Once associated, the fungi alter nutrient content of the plant and enhance or begin production of secondary metabolites. The change in chemical composition acts to deter herbivory by insects, grazing by ungulates and/or oviposition by adult insects. Endophyte-mediated defense can also be effective against pathogens and non-herbivory damage.

Archaeorhizomyces finlayi is a species of fungus in the class Archaeorhizomycetes and the type species. When the class was described in 2011, a single order, Archaeorhizomycetales, family, Archaeorhizomycetaceae, genus, Archaeorhizomyces and species, Archaeorhizomyces finlayi, were described, though other species are known to exist. A. finlayi is named in honour of Roger D. Finlay.

<span class="mw-page-title-main">Mycorrhizal network</span> Underground fungal networks that connect individual plants together

A mycorrhizal network is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining with plant roots. This network connects individual plants together. Mycorrhizal relationships are most commonly mutualistic, with both partners benefiting, but can be commensal or parasitic, and a single partnership may change between any of the three types of symbiosis at different times.

<span class="mw-page-title-main">Mycorrhizal fungi and soil carbon storage</span> Terrestrial ecosystem

Soil carbon storage is an important function of terrestrial ecosystems. Soil contains more carbon than plants and the atmosphere combined. Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well. Measurements of plant carbon allocation to mycorrhizal fungi have been estimated to be 5 to 20% of total plant carbon uptake, and in some ecosystems the biomass of mycorrhizal fungi can be comparable to the biomass of fine roots. Recent research has shown that mycorrhizal fungi hold 50 to 70 percent of the total carbon stored in leaf litter and soil on forested islands in Sweden. Turnover of mycorrhizal biomass into the soil carbon pool is thought to be rapid and has been shown in some ecosystems to be the dominant pathway by which living carbon enters the soil carbon pool.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

<span class="mw-page-title-main">Ectomycorrhizal extramatrical mycelium</span>

Ectomycorrhizal extramatrical mycelium is the collection of filamentous fungal hyphae emanating from ectomycorrhizas. It may be composed of fine, hydrophilic hypha which branches frequently to explore and exploit the soil matrix or may aggregate to form rhizomorphs; highly differentiated, hydrophobic, enduring, transport structures.

<span class="mw-page-title-main">Root microbiome</span> Microbe community of plant roots

The root microbiome is the dynamic community of microorganisms associated with plant roots. Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi, and archaea. The microbial communities inside the root and in the rhizosphere are distinct from each other, and from the microbial communities of bulk soil, although there is some overlap in species composition.

Roy Watling is a Scottish mycologist who has made significant contributions to the study of fungi both in the identification of new species and correct taxonomic placement, as well as in fungal ecology.

Orchid mycorrhizae are endomycorrhizal fungi which develop symbiotic relationships with the roots and seeds of plants of the family Orchidaceae. Nearly all orchids are myco-heterotrophic at some point in their life cycle. Orchid mycorrhizae are critically important during orchid germination, as an orchid seed has virtually no energy reserve and obtains its carbon from the fungal symbiont.

<span class="mw-page-title-main">Mucoromycota</span> Diverse group of molds

Mucoromycota is a division within the kingdom fungi. It includes a diverse group of various molds, including the common bread molds Mucor and Rhizopus. It is a sister phylum to Dikarya.

References

  1. 1 2 3 4 5 Anna Rosling; Filipa Cox; Karelyn Cruz-Martinez; Katarina Ihrmark; Gwen-Aëlle Grelet; Björn D. Lindahl; Audrius Menkis; Timothy Y. James (2011). "Archaeorhizomycetes: Unearthing an ancient class of ubiquitous soil fungi". Science . 333 (6044): 876–9. Bibcode:2011Sci...333..876R. doi:10.1126/science.1206958. PMID   21836015. S2CID   206534521.
  2. "New fungi class formally identified". Science Daily. 11 August 2011. Retrieved 14 August 2011.
  3. ""Boring" fungus finally gets a name". Futurity.org. 16 August 2011. Retrieved 19 August 2011.
  4. Schadt, Christopher W. (2003). "Seasonal Dynamics of Previously Unknown Fungal Lineages in Tundra Soils". Science. 301 (5638): 1359–1361. Bibcode:2003Sci...301.1359S. doi:10.1126/science.1086940. PMID   12958355. S2CID   22753815.
  5. Porter, Terri M. (2008). "Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life". Molecular Phylogenetics and Evolution. 46 (2): 635–644. Bibcode:2008MolPE..46..635P. doi:10.1016/j.ympev.2007.10.002. PMID   18032071.
  6. Audrius Menkis; Hector Urbina; Timothy Y. James; Anna Rosling (2014). "Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species". Fungal Biology . 118 (12): 943–955. Bibcode:2014FunB..118..943M. doi:10.1016/j.funbio.2014.08.005. PMID   25457942.