Corn smut

Last updated

Corn smut
Ustilago maydis diploid teleospores 160X.png
Ustilago maydis diploid teleospores
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Ustilaginomycetes
Order: Ustilaginales
Family: Ustilaginaceae
Genus: Ustilago
Species:
U. maydis
Binomial name
Ustilago maydis
Corn smut
Ustilago maydis J1b.jpg
Huitlacoche
Common nameshuitlacoche (Mexico), blister smut of maize, boil smut of maize, common smut of maize, corn truffle[ citation needed ]
Causal agentsUstilago maydis
Hosts maize and teosinte
EPPO Code USTIMA
DistributionWorldwide, where corn is grown [2] [3]

Corn smut is a plant disease caused by the pathogenic fungus Ustilago maydis. One of several cereal crop pathogens called smut, the fungus forms galls on all above-ground parts of corn species such as maize and teosinte. The infected corn is edible; in Mexico, it is considered a delicacy, called huitlacoche, [4] often eaten as a filling in quesadillas and other tortilla-based dishes, as well as in soups.

Contents

Etymology

In Mexico, corn smut is known as huitlacoche (Spanish pronunciation: [(ɡ)witlaˈkotʃe] , sometimes spelled cuitlacoche). This word entered Spanish in Mexico from Classical Nahuatl, though the Nahuatl words from which huitlacoche is derived are debated. In modern Nahuatl, the word for huitlacoche is cuitlacochin (Nahuatl pronunciation: [kʷit͡ɬɑˈkot͡ʃin] ), and some sources deem cuitlacochi to be the classical form. [5]

Some sources wrongly give the etymology as coming from the Nahuatl words cuitlatl [ˈkʷit͡ɬɑt͡ɬ] ("excrement" or "rear-end", actually meaning "excrescence") and cochtli [ˈkot͡ʃt͡ɬi] ("sleeping", from cochi "to sleep"), thus giving a combined mismeaning of "sleeping/hibernating excrement", [5] [6] but actually meaning "sleeping excrescence", referring to the fact that the fungus grows between the kernels and impedes them from developing, thus they remain "sleeping".

A second group of sources deem the word to mean "raven's excrement". [7] [8] These sources appear to be combining the word cuitlacoche for "thrasher" [9] with cuitla, meaning "excrement", actually meaning "excrescence". However, the avian meaning of cuitlacoche derives from the Nahuatl word "song" cuīcatl [ˈkʷiːkɑt͡ɬ] , itself from the verb "to sing" cuīca [ˈkʷiːkɑ] . [5] This root then clashes with this reconstruction's second claim that the segment cuitla- comes from cuitla ("excrement").

One source derives the meaning as "corn excrescence", using cuītla again and "maize" tlaōlli [t͡ɬɑˈoːlːi] . [10] This requires the linguistically unlikely evolution of tlaōlli "maize" into tlacoche.

In Peru, it is known as chumo or pacho.

Taxonomy

U. maydis is the best known and studied of the Ustilaginomycetes, a sub class of basidiomycota, and so is often used as the exemplar species when talking about its entire class. [11]

Characteristics

The fungus infects all parts of the host plant by invading the ovaries of its host. The infection causes the corn kernels to swell up into tumor-like galls, whose tissues, texture, and developmental pattern are mushroom-like. The galls grow to 4 to 5 inches in diameter. These galls are made up of hypertrophied cells of the infected plant, along with resulting fungal threads, and blue-black spores. [12] These dark-colored spores give the cob a burned, scorched appearance; this is the origin of the generic name Ustilago, from the Latin word ustilare (to burn).

This ear of corn has been infected with Ustilago maydis. Corn smut on an infected ear of corn.png
This ear of corn has been infected with Ustilago maydis.

Biology

Life cycle

Ustilago maydis haploid sporidia Ustilago maydis haploid sporida 160X.png
Ustilago maydis haploid sporidia

When grown in the lab on very simple media, it behaves like baker's yeast, forming single cells called sporidia. These cells multiply by budding off daughter cells. When two compatible sporidia meet on the surface of the plant, however, they switch to a different mode of growth. First, they produce one or another pheromone, and begin producing one or the other type of pheromone receptor - this depends on mating type a or b, as determined by alleles at two unlinked mating loci. If this signalling is successful they then send out conjugation tubes to find each other, [11] after which they fuse and make a hypha to enter the maize plant. Hyphae growing in the plant are dikaryotic; they possess two haploid nuclei per hyphal compartment. In contrast to sporidia, the dikaryotic phase of U. maydis only occurs during successful infection of a maize plant, and cannot be maintained in the laboratory.

Proliferation of the fungus inside the plant leads to disease symptoms such as chlorosis, anthocyanin formation, reduced growth, and the appearance of tumors harboring the developing teliospores. These teliospores help to overwinter the pathogen into the next season. They survive in the soil. [13] [14]

Mature tumors release spores that are dispersed by rain and wind. Under appropriate conditions, a metabasidium is formed in which meiosis occurs. Resulting haploid nuclei migrate into elongated single cells. These cells detach from the metabasidium to become the sporidia, thus completing the life cycle.

Host/pathogen conflict

Plants have evolved efficient defense systems against pathogenic microbes. A rapid plant defense reaction after pathogen attack is the oxidative burst, which involves the production of reactive oxygen species at the site of the attempted invasion. As a pathogen, U. maydis can respond to such an oxidative burst by an oxidative stress response, regulated by gene YAP1. This response protects U. maydis from the host attack, and is necessary for the pathogen's virulence. [15] Furthermore, U. maydis has a well-established recombinational DNA repair system. [16] This repair system involves a homolog of Rad51 that has a very similar sequence and size to its mammalian counterparts. This system also involves a protein, Rec2 that is more distantly related to Rad51, and Brh2 protein that is a streamlined version of the mammalian Breast Cancer 2 (BRCA2) protein. When any of these proteins is inactivated, sensitivity of U. maydis to DNA damaging agents is increased. Also mitotic recombination becomes deficient, mutation frequency increases and meiosis fails to complete. These observations suggest that recombinational repair during mitosis and meiosis in U. maydis may assist the pathogen in surviving DNA damage arising from the host's oxidative defensive response to infection, as well as from other DNA damaging agents.

Proteome

U. maydis is known to produce four Gα proteins, and one each of and . [11]

Management

Losses from corn smut can vary greatly, however annual yield losses rarely exceed 2% when resistant cultivars are planted. This disease can have a large economic impact on sweet corn, specifically when smut galls replace the kernels. There are many ways to control and manage corn smut; however, corn smut cannot be controlled by any common fungicide at this time, as Ustilago maydis infects individual corn kernels instead of infecting the entire cob, like head smut. [17] Some beneficial ways to contain corn smut include resistant corn plants, crop rotation, and avoiding mechanical injury to the plant. A mechanical injury can cause the corn to become easily accessible to Ustilago maydis, enhancing infection. Additionally, clearing the planting area of debris can help control corn smut, as the teliospores from corn smut overwinter in debris. This is not the best practice, though, because corn smut can also overwinter in the soil; crop rotation is recommended. Lastly, as excess nitrogen in the soil augments infection rate, using fertilizer with low nitrogen levels, or just limiting the amount of nitrogen in the soil proves to be another way to control corn smut. [18]

Ear of corn infected with Ustilago maydis Corn smut on an ear of corn.png
Ear of corn infected with Ustilago maydis

Environment

Although not all the conditions that favor growth of Ustilago maydis are known, there are certain environments where corn smut seems to thrive, depending on both abiotic and biotic factors. Hot and dry weather during pollination followed by a heavy rainy season appear to improve the pathogenicity of corn smut. [19] Furthermore, excess manure (and therefore nitrogen) in the soil also increases pathogenicity. Not only do these abiotic factors increase infectability, they also increase disease spread. High winds and heavy rain also increase disease spread as the spores of corn smut can be more easily transmitted. Other biotic factors largely have to do with the extent by which humans interact with the corn and corn smut. If corn debris is not cleared at the end of the season, the spores can overwinter in the corn fragments and live to infect another generation. [20] Finally, humans wounding the corn (with shears or other tools of the like) present the opportunity for corn smut to easily enter the plant.

Non-culinary uses

Model organism

The yeast-like growth of U. maydis makes it an appealing model organism for research, although its relevance in nature is unknown. The fungus is exceptionally well-suited for genetic modification. This allows researchers to study the interaction between the fungus and its host with relative ease. The availability of the entire genome is another advantage of this fungus as a model organism. [21]

U. maydis is not only used to study plant disease, but it also is used to study plant genetics. In 1996, a study on U. maydis genetics led to the discovery of synthesis-dependent strand annealing, a method of homologous recombination used in DNA repair. [22] Other studies in the fungus have also investigated the role of the cytoskeleton in polarized growth.[ citation needed ] It is largely due to work with U. maydis that the function of the breast-cancer gene BRCA2 is now known. [23] The fungus is mostly studied as model organism for host pathogen interaction and delivery of effectors protein.

Industrial biotechnology

Ustilago maydis is able to produce a broad range of valuable chemicals such as ustilagic acid, itaconic acid, malic acid, and hydroxyparaconic acid. With this ability it is gaining more and more relevance for industrial applications. [24]

Culinary use

Smut feeds on the corn plant and decreases the yield. Smut-infected crops are often destroyed, although some farmers use them to prepare silage. However, the immature infected galls are still edible, and in Mexico they are highly esteemed as a delicacy. It is known as huitlacoche, and sold for a significantly higher price than uninfected corn. The consumption of corn smut in Mexico originated directly from Aztec cuisine. [25] For culinary use, the galls are harvested while still immature fully mature galls are dry and almost entirely spore-filled. The immature galls, gathered two to three weeks after an ear of corn is infected, still retain moisture and, when cooked, have a flavor described as mushroom-like, sweet, savory, woody, and earthy. Flavor compounds include sotolon and vanillin, as well as the sugar glucose.

Huitlacoche is a source of the essential amino acid lysine, which the body requires but cannot manufacture. It also contains levels of beta-glucans similar to, and protein content equal or superior to, most edible fungi. [26]

The fungus has had difficulty entering into the American and European diets as most farmers see it as blight, despite attempts by government and high-profile chefs to introduce it. In the mid-1990s, due to demand created by high-end restaurants, Pennsylvania and Florida farms were allowed by the United States Department of Agriculture (USDA) to intentionally infect corn with huitlacoche. Most observers consider the program to have had little impact,[ citation needed ] although the initiative is still in progress. The cursory show of interest is significant because the USDA has spent a considerable amount of time and money trying to eradicate corn smut in the United States. Moreover, in 1989, the James Beard Foundation held a high-profile huitlacoche dinner, prepared by Josefina Howard, chef at Rosa Mexicano restaurant. [27] This dinner tried to get Americans to eat more of it by renaming it the "Mexican truffle" and it is often compared to truffles in food articles describing its taste and texture. [27] [28] [29]

Native American tribes in North America ate corn smut as well. The Hidatsa tribe of North Dakota's practice of preparing and eating corn smut is described vividly in Buffalo Bird Woman's Garden . [30]

Native Americans of the American Southwest, including the Zuni people, have used corn smut in an attempt to induce labor. It has similar medicinal effects to ergot, but weaker, due to the presence of the chemical ustilagine. [31]

Recipes of Mexico

A simple Mexican-style succotash can be made from chorizo, onions, garlic, serrano peppers, huitlacoche, and shrimp with salsa taquera. The mild, earthy flavors of the huitlacoche blend nicely with the fats of the chorizo and bond to mellow out the heat from the peppers and salsa.

Another Maya favorite on the Riviera Maya (Cancun to Tulum) is to add huitlacoche to omelettes. Its earthy flavors bond with the fats that cook the eggs to mellow the flavors into a truffle-like taste.

Huitlacoche is also popular in quesadillas with Mexican cheese, sautéed onions, and tomatoes.

The blueish color transforms into the recognizable black color only with heat. Any dish with huitlacoche must include a slow simmer of the fungus until it becomes black, which also removes most of the starch of the corn, and what is left is a black oily paste.

Availability

In Mexico, huitlacoche is mostly consumed fresh and can be purchased at restaurants or street or farmer's markets throughout the country and, to a much lesser extent, can also be purchased as a canned good in some markets and via the internet. Farmers in the countryside spread the spores around intentionally to create more of the fungus. In some parts of the country, they call the fungus "hongo de maiz", i.e. "maize fungus". [32]

Nutritional value

When corn smut grows on a corn cob, it changes the nutritional worth of the corn it affects. Corn smut contains more proteins than the uninfected grains normally do. The amino acid lysine, of which corn contains very little, abounds in corn smut. [33]

See also

Related Research Articles

<span class="mw-page-title-main">Basidiomycota</span> Division of fungi

Basidiomycota is one of two large divisions that, together with the Ascomycota, constitute the subkingdom Dikarya within the kingdom Fungi. Members are known as basidiomycetes. More specifically, Basidiomycota includes these groups: agarics, puffballs, stinkhorns, bracket fungi, other polypores, jelly fungi, boletes, chanterelles, earth stars, smuts, bunts, rusts, mirror yeasts, and Cryptococcus, the human pathogenic yeast.

<span class="mw-page-title-main">Rust (fungus)</span> Order of fungi

Rusts are fungal plant pathogens of the order Pucciniales causing plant fungal diseases.

<span class="mw-page-title-main">Smut (fungus)</span> Reproductive structure of fungi

The smuts are multicellular fungi characterized by their large numbers of teliospores. The smuts get their name from a Germanic word for 'dirt' because of their dark, thick-walled, and dust-like teliospores. They are mostly Ustilaginomycetes and comprise seven of the 15 orders of the subphylum. Most described smuts belong to two orders, Ustilaginales and Tilletiales. The smuts are normally grouped with the other basidiomycetes because of their commonalities concerning sexual reproduction.

<i>Ustilago</i> Genus of fungi

Ustilago is a genus of approximately 200 smut fungi, which are parasitic on grasses. 170 species are accepted by Wijayawardene et al. 2020;

<span class="mw-page-title-main">Mating in fungi</span> Combination of genetic material between compatible mating types

Fungi are a diverse group of organisms that employ a huge variety of reproductive strategies, ranging from fully asexual to almost exclusively sexual species. Most species can reproduce both sexually and asexually, alternating between haploid and diploid forms. This contrasts with most multicellular eukaryotes such as mammals, where the adults are usually diploid and produce haploid gametes which combine to form the next generation. In fungi, both haploid and diploid forms can reproduce – haploid individuals can undergo asexual reproduction while diploid forms can produce gametes that combine to give rise to the next generation.

<span class="mw-page-title-main">Sugarcane smut</span> Species of fungus

Sugarcane smut is a fungal disease of sugarcane caused by the fungus Sporisorium scitamineum. The disease is known as culmicolous, which describes the outgrowth of fungus of the stalk on the cane. It attacks several sugarcane species and has been reported to occur on a few other grass species as well, but not to a critical amount. The most recognizable characteristic of this disease is a black or gray growth that is referred to as a "smut whip". Resistance to sugarcane smut is the best course of action for management, but also the use of disease free seed is important. On smaller scale operations treatments using hot water and removing infected plants can be effective. The main mode of spore dispersal is the wind but the disease also spreads through the use of infected cuttings. Sugarcane smut is a devastating disease in sugarcane growing areas globally.

<span class="mw-page-title-main">Ustilaginales</span> Order of fungi

The Ustilaginales are an order of fungi within the class Ustilaginomycetes. The order contained 8 families, 49 genera, and 851 species in 2008.

<span class="mw-page-title-main">Ustilaginomycotina</span> Subdivision of fungi

The Ustilaginomycotina is a subdivision within the division Basidiomycota of the kingdom Fungi. It consists of the classes Ustilaginomycetes and Exobasidiomycetes, and in 2014 the subdivision was reclassified and the two additional classes Malasseziomycetes and Monilielliomycetes added. The name was first published by Doweld in 2001; Bauer and colleagues later published it in 2006 as an isonym. Ustilagomycotina and Agaricomycotina are considered to be sister groups, and they are in turn sister groups to the subdivision Pucciniomycotina.

<i>Tilletia caries</i> Species of fungus

Tilletia caries is a basidiomycete that causes common bunt of wheat. The common names of this disease are stinking bunt of wheat and stinking smut of wheat. This pathogen infects wheat, rye, and various other grasses. T. caries is economically and agriculturally important because it reduces both the wheat yield and grain quality.

<i>Urocystis agropyri</i> Species of fungus

Urocystis agropyri is a fungal plant pathogen that causes flag smut on wheat.

Sporisorium reilianum Langdon & Full., (1978), previously known as Sphacelotheca reiliana, and Sporisorium reilianum, is a species of biotrophic fungus in the family Ustilaginaceae. It is a plant pathogen that infects maize and sorghum.

<span class="mw-page-title-main">Dimorphic fungus</span> Fungi that can exist as mold or yeast

Dimorphic fungi are fungi that can exist in the form of both mold and yeast. This is usually brought about by change in temperature and the fungi are also described as thermally dimorphic fungi. An example is Talaromyces marneffei, a human pathogen that grows as a mold at room temperature, and as a yeast at human body temperature.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

<span class="mw-page-title-main">Corn grey leaf spot</span> Fungal disease of maize

Grey leaf spot (GLS) is a foliar fungal disease that affects maize, also known as corn. GLS is considered one of the most significant yield-limiting diseases of corn worldwide. There are two fungal pathogens that cause GLS: Cercospora zeae-maydis and Cercospora zeina. Symptoms seen on corn include leaf lesions, discoloration (chlorosis), and foliar blight. Distinct symptoms of GLS are rectangular, brown to gray necrotic lesions that run parallel to the leaf, spanning the spaces between the secondary leaf veins. The fungus survives in the debris of topsoil and infects healthy crops via asexual spores called conidia. Environmental conditions that best suit infection and growth include moist, humid, and warm climates. Poor airflow, low sunlight, overcrowding, improper soil nutrient and irrigation management, and poor soil drainage can all contribute to the propagation of the disease. Management techniques include crop resistance, crop rotation, residue management, use of fungicides, and weed control. The purpose of disease management is to prevent the amount of secondary disease cycles as well as to protect leaf area from damage prior to grain formation. Corn grey leaf spot is an important disease of corn production in the United States, economically significant throughout the Midwest and Mid-Atlantic regions. However, it is also prevalent in Africa, Central America, China, Europe, India, Mexico, the Philippines, northern South America, and Southeast Asia. The teleomorph of Cercospora zeae-maydis is assumed to be Mycosphaerella sp.

<span class="mw-page-title-main">Southern corn leaf blight</span> Fungal disease of maize

Southern corn leaf blight (SCLB) is a fungal disease of maize caused by the plant pathogen Bipolaris maydis.

<i>Ustilago esculenta</i> Species of fungus

Ustilago esculenta is a species of fungus in the Ustilaginaceae, a family of smut fungi. It is in the same genus as the fungi that cause corn smut, loose smut of barley, false loose smut, covered smut of barley, loose smut of oats, and other grass diseases. This species is pathogenic as well, attacking Manchurian wild rice, also known as Manchurian ricegrass, Asian wild rice, and wateroat. This grass is its only known host.

<i>Zizania latifolia</i> Species of grass

Zizania latifolia, known as Manchurian wild rice, is the only member of the wild rice genus Zizania native to Asia. It is used as a food plant. Both the stem and grain are edible. Gathered in the wild, Manchurian wild rice was an important grain in ancient China. A wetland plant, Manchurian wild rice is now very rare in the wild, and its use as a grain has completely disappeared in Asia, though it continues to be cultivated for its stems. A measure of its former popularity is that the surname Jiǎng, one of the most common in China, derives from this crop.

Ustilagic acid is an organic compound with the formula C36H64O18. The acid is a cellobiose lipid produced by the corn smut fungus Ustilago maydis under conditions of nitrogen starvation. The acid was discovered in 1950 and was proved to be an amphipathic glycolipid with surface active properties. The name comes from Latin ustus which means burnt and refers to the scorched appearance of the smut fungi.

Phyllachora maydis is a plant pathogen causing ascomycete diseases in maize/corn, and is more commonly referred to as tar spot. Identified by the distinctive development of stroma, this pathogen in itself is of little economic importance in the production of corn. However, the accompanying fungal infection of Monographella maydis, identified by “fish-eye” lesions, was claimed to cause significant foliar damage and subsequently yield reduction. As of 2021 there is insufficient information about this pathogen and its management.

Regine Kahmann is a German microbiologist and was Director at the Max Planck Institute for Terrestrial Microbiology in Marburg from 2000 to 2019. She was made a Foreign Member of the Royal Society (ForMRS) in 2020.

References

  1. Ustilago maydis in Index Fungorum
  2. "Common smut of corn". apsnet.org. American Phytopathological Society. Retrieved 2018-10-06.
  3. "Ustilago maydis (DC.) Corda". Global Biodiversity Information Facility . Retrieved 2018-10-06.
  4. Vegetables, Revised: The Most Authoritative Guide to Buying, Preparing, and Cooking, with More than 300 Recipes (Google eBook) Page 184, by James Peterson, Random House LLC, Mar 27, 2012 Accessed October 24, 2013 via Google Books
  5. 1 2 3 Guido Gómez de Silva, "Diccionario breve de mexicanismos", Fondo de Cultura Económica, Mexico 2001. Entries for "huitlacoche" and "cuicacoche o cuiltacoche".
  6. Producción de caviar azteca en invernadero, Teorema Ambiental, published August 2006. Retrieved April 2010 (Spanish)
  7. The Guardian City Guide. November 8, 2008.
  8. Wolff, Barbara. Professor introduces unusual edible fungus to Madison, University of Wisconsin - Madison News, September 19, 2006.
  9. Raúl Marcó del Pont, Guía de aves canoras y de ornato, Conabio-ine-semarnap, Instituto Nacional de Ecología, Mexico 1997. p. 66-70.
  10. Irene Vasconcelos Dueñas, Los hongos medicinales en México, Mexico, August 2007. (retrieved April 2010) (Spanish)
  11. 1 2 3 Li, Liande; Wright, Sara J.; Krystofova, Svetlana; Park, Gyungsoon; Borkovich, Katherine A. (2007). "Heterotrimeric G Protein Signaling in Filamentous Fungi". Annual Review of Microbiology . 61 (1). Annual Reviews: 423–452. doi:10.1146/annurev.micro.61.080706.093432. ISSN   0066-4227. PMID   17506673.
  12. Page 109 By Nicholas P. Money Professor of Botany, Miami University, Ohio; Published by Oxford University Press, Aug 4, 2006. Accessed online vis Google Books October 24, 2013.
  13. Banuett, F. (1995). "Genetics of Ustilago Maydis, A Fungal Pathogen that Induces Tumors in Maize". Annual Review of Genetics. 29 (1): 179–208. doi:10.1146/annurev.ge.29.120195.001143. PMID   8825473.
  14. Christensen, J.J. (1963). "Corn smut caused by Ustilago maydis. Monograph no. 2". Amer. Phytopath. Society.
  15. Molina, L; Kahmann, R (2007). "An Ustilago maydis gene involved in H2O2 detoxification is required for virulence". Plant Cell. 19 (7): 2293–2309. doi:10.1105/tpc.107.052332. PMC   1955693 . PMID   17616735.
  16. Kojic, M; Zhou, Q; Lisby, M; Holloman, WK (2006). "Rec2 interplay with both Brh2 and Rad51 balances recombinational repair in Ustilago maydis". Mol Cell Biol. 26 (2): 678–688. doi:10.1128/MCB.26.2.678-688.2006. PMC   1346908 . PMID   16382157.
  17. Mohan, S. K., Hamm, P.B., Clough, G.H., and du Toit, L.J. 2013. “Corn Smuts” Oregon State University, A Pacific Northwest Extension. https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw647.pdf (accessed October 12, 2020).
  18. 2020. “Corn Smut” University of Massachusetts Amherst: The Center for Agriculture, Food, and the Environment. https://ag.umass.edu/vegetable/fact-sheets/corn-smut (accessed October 12, 2020)
  19. Hansen, M.A. 2009. “Corn Smut” Virginia Cooperative Extension. https://www.pubs.ext.vt.edu/450/450-706/450-706.html Archived 2020-01-21 at the Wayback Machine (accessed October 13, 2020).
  20. Petruzzello, M. 2017. “Corn Smut” Encyclopedia Britannica. https://www.britannica.com/science/corn-smut (accessed October 13, 2020).
  21. Kämper J, Kahmann R, Bölker M, et al. (November 2006). "Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis". Nature. 444 (7115): 97–101. Bibcode:2006Natur.444...97K. doi: 10.1038/nature05248 . hdl: 10261/339644 . PMID   17080091.
  22. Ferguson, DO; Holloman, HK (1996). "Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model". PNAS USA. 93 (11): 5419–5424. Bibcode:1996PNAS...93.5419F. doi: 10.1073/pnas.93.11.5419 . PMC   39261 . PMID   8643590.
  23. Kojic, M; Kostrub, CF; Buchman, AR; Holloman, WK (2002). "BRCA2 Homolog Required for Proficiency in DNA Repair, Recombination, and Genome Stability in Ustilago maydis". Molecular Cell. 10 (3): 683–691. doi: 10.1016/S1097-2765(02)00632-9 . PMID   12408834.
  24. Geiser, Elena; Wiebach, Vincent; Wierckx, Nick; Blank, Lars M. (2014-01-01). "Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals". Fungal Biology and Biotechnology. 1: 2. doi: 10.1186/s40694-014-0002-y . ISSN   2054-3085. PMC   5598272 . PMID   28955444.
  25. Uribe, Monica Ortiz (2009-08-20). "In Mexico, Tar-Like Fungus Is A Delicacy". NPR . Retrieved 2009-08-20.
  26. Aydoğdu, Mehmet; Gölükçü, Muharrem (21 September 2017). "Nutritional value of huitlacoche, maize mushroom caused by Ustilago maydis". Food Science and Technology. 37 (4): 531–535. doi: 10.1590/1678-457X.19416 .
  27. 1 2 Newhall, Edith (25 September 1989). "Fungus Feast". New York Magazine: 44.
  28. TEMPTATION; Mexico's Answer To the Truffle By FLORENCE FABRICANT Published: August 30, 2000 New York Times. Accessed via NYTIMES online archives March 17, 2014
  29. Corn Smut, Mexican Truffles by GREEN DEANE, December 2012. Archive of food Blog: Eat the weeds and other things too... - Accessed online March 17, 2014
  30. "Buffalo Bird Woman's Garden". digital.library.upenn.edu. Retrieved 2023-11-25.
  31. O'Dowd, Michael J. (2001). The History of Medications for Women. Taylor & Francis. ISBN   978-1-85070-002-9. p. 410, via Google Books
  32. Laferrière, Joseph E. (1991). "Mountain Pima ethnomycology". Journal of Ethnobiology. 11 (1): 15–160.
  33. Battillo, J. (2018). "The role of corn fungus in Basketmaker II diet: A paleonutrition perspective on early corn farming adaptations". Journal of Archaeological Science: Reports. 21: 64–70. Bibcode:2018JArSR..21...64B. doi:10.1016/j.jasrep.2018.07.003. S2CID   92182019.