Chlorin

Last updated
Chlorin
Chlorin.svg
Names
Other names
2,3-Dihydroporphine
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
  • InChI=1S/C20H16N4/c1-2-14-10-16-5-6-18(23-16)12-20-8-7-19(24-20)11-17-4-3-15(22-17)9-13(1)21-14/h1-6,9-12,22-23H,7-8H2/b13-9-,14-10-,15-9-,16-10-,17-11-,18-12-,19-11-,20-12- Yes check.svgY
    Key: UGADAJMDJZPKQX-CEVVSZFKSA-N Yes check.svgY
  • InChI=1/C20H16N4/c1-2-14-10-16-5-6-18(23-16)12-20-8-7-19(24-20)11-17-4-3-15(22-17)9-13(1)21-14/h1-6,9-12,22-23H,7-8H2/b13-9-,14-10-,15-9-,16-10-,17-11-,18-12-,19-11-,20-12-
    Key: UGADAJMDJZPKQX-CEVVSZFKBJ
  • C(N1)(/C=C2N=C(C=C\2)/C=C3N/C(C=C\3)=C\4)=CC=C1/C=C5CCC4=N/5
Properties
C20H16N4
Molar mass 312.36784
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

In organic chemistry, chlorins are tetrapyrrole pigments that are partially hydrogenated porphyrins. [1] The parent chlorin is an unstable compound which undergoes air oxidation to porphine. [2] The name chlorin derives from chlorophyll. Chlorophylls are magnesium-containing chlorins and occur as photosynthetic pigments in chloroplasts. The term "chlorin" strictly speaking refers to only compounds with the same ring oxidation state as chlorophyll.

Contents

Chlorins are excellent photosensitizing agents. Various synthetic chlorins analogues such as m-tetrahydroxyphenylchlorin (mTHPC) and mono-L-aspartyl chlorin e6 are effectively employed in experimental photodynamic therapy as photosensitizer. [3]

Chlorophylls

The most abundant chlorin is the photosynthetic pigment chlorophyll. Chlorophylls have a fifth, ketone-containing ring unlike the chlorins. Diverse chlorophylls exists, such as chlorophyll a, chlorophyll b, chlorophyll d, chlorophyll e, chlorophyll f, and chlorophyll g. Chlorophylls usually feature magnesium as a central metal atom, replacing the two NH centers in the parent. [4]

Variation

Structures comparing porphin, chlorin, bacteriochlorin, and isobacteriochlorin Porphyrin, chlorin, bacteriochlorins.png
Structures comparing porphin, chlorin, bacteriochlorin, and isobacteriochlorin

Microbes produce two reduced variants of chlorin, bacteriochlorins and isobacteriochlorins. Bacteriochlorins are found in some bacteriochlorophylls; the ring structure is produced by Chlorophyllide a reductase (COR) reducing a chlorin ring at the C7-8 double boud. [5] Isobacteriochlorins are found in nature mostly as sirohydrochlorin, a biosynthetic intermediate of vitamin B12, produced without going through a chlorin. In living organisms, both are ultimately derived from uroporphyrinogen III, a near-universal intermediate in tetrapyrrole biosynthesis. [6]

Synthetic chlorins

Numerous synthetic chlorins with different functional groups and/or ring modifications have been examined. [7]

Contracted chlorins can be synthesised by reduction of B(III)subporphyrin or by oxidation of corresponding B(III)subbacteriochlorin. [8] The B(III)subchlorins were directly synthesized as meso-ester B(III)subchlorin from meso-diester tripyrromethane, these class of compound showed very good fluorescence quantum yield and singlet oxygen producing efficiency [9] [10]

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Chlorophyll</span> Green pigments found in plants, algae and bacteria

Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words χλωρός, khloros and φύλλον, phyllon ("leaf"). Chlorophyll allow plants to absorb energy from light.

<span class="mw-page-title-main">Porphyrin</span> Heterocyclic organic compound with four modified pyrrole subunits

Porphyrins are a group of heterocyclic macrocycle organic compounds, composed of four modified pyrrole subunits interconnected at their α carbon atoms via methine bridges (=CH−). In vertebrates, an essential member of the porphyrin group is heme, which is a component of hemoproteins, whose functions include carrying oxygen in the bloodstream. In plants, an essential porphyrin derivative is chlorophyll, which is involved in light harvesting and electron transfer in photosynthesis.

<span class="mw-page-title-main">Photodynamic therapy</span> Form of phototherapy

Photodynamic therapy (PDT) is a form of phototherapy involving light and a photosensitizing chemical substance used in conjunction with molecular oxygen to elicit cell death (phototoxicity).

<span class="mw-page-title-main">Aminolevulinic acid</span> Endogenous non-proteinogenic amino acid

δ-Aminolevulinic acid, an endogenous non-proteinogenic amino acid, is the first compound in the porphyrin synthesis pathway, the pathway that leads to heme in mammals, as well as chlorophyll in plants.

<span class="mw-page-title-main">Bacteriochlorophyll</span> Chemical compound

Bacteriochlorophylls (BChl) are photosynthetic pigments that occur in various phototrophic bacteria. They were discovered by C. B. van Niel in 1932. They are related to chlorophylls, which are the primary pigments in plants, algae, and cyanobacteria. Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but the process is anoxygenic and does not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria. Replacement of Mg2+ with protons gives bacteriophaeophytin (BPh), the phaeophytin form.

Chlorophyll <i>a</i> Chemical compound

Chlorophyll a is a specific form of chlorophyll used in oxygenic photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light, and it is a poor absorber of green and near-green portions of the spectrum. Chlorophyll does not reflect light but chlorophyll-containing tissues appear green because green light is diffusively reflected by structures like cell walls. This photosynthetic pigment is essential for photosynthesis in eukaryotes, cyanobacteria and prochlorophytes because of its role as primary electron donor in the electron transport chain. Chlorophyll a also transfers resonance energy in the antenna complex, ending in the reaction center where specific chlorophylls P680 and P700 are located.

<span class="mw-page-title-main">Phthalocyanine</span> Chemical compound

Phthalocyanine is a large, aromatic, macrocyclic, organic compound with the formula (C8H4N2)4H2 and is of theoretical or specialized interest in chemical dyes and photoelectricity.

<span class="mw-page-title-main">Corrole</span>

A corrole is an aromatic tetrapyrrole. The corrin ring is also present in cobalamin (vitamin B12). The ring consists of nineteen carbon atoms, with four nitrogen atoms in the core of the molecule. In this sense, corrole is very similar to porphyrin.

<span class="mw-page-title-main">Photosensitizer</span> Type of molecule reacting to light

Photosensitizers are light absorbers that alter the course of a photochemical reaction. They usually are catalysts. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its ground state, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is polymer chemistry, using photosensitizers in reactions such as photopolymerization, photocrosslinking, and photodegradation. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in photocatalysis, photon upconversion and photodynamic therapy. Generally, photosensitizers absorb electromagnetic radiation consisting of infrared radiation, visible light radiation, and ultraviolet radiation and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large de-localized π-systems, which lowers the energy of HOMO and LUMO orbitals to promote photoexcitation. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor quantum dots as photosensitizers.

<span class="mw-page-title-main">Protoporphyrin IX</span> Chemical compound

Protoporphyrin IX is an organic compound, classified as a porphyrin, that plays an important role in living organisms as a precursor to other critical compounds like heme (hemoglobin) and chlorophyll. It is a deeply colored solid that is not soluble in water. The name is often abbreviated as PPIX.

<span class="mw-page-title-main">Alan R. Battersby</span> English organic chemist (1925–2018)

Sir Alan Rushton Battersby was an English organic chemist best known for his work to define the chemical intermediates in the biosynthetic pathway to vitamin B12 and the reaction mechanisms of the enzymes involved. His research group was also notable for its synthesis of radiolabelled precursors to study alkaloid biosynthesis and the stereochemistry of enzymic reactions. He won numerous awards including the Royal Medal in 1984 and the Copley Medal in 2000. He was knighted in the 1992 New Year Honours. Battersby died in February 2018 at the age of 92.

<span class="mw-page-title-main">Temoporfin</span> Chemical compound

Temoporfin (INN) is a photosensitizer used in photodynamic therapy for the treatment of squamous cell carcinoma of the head and neck . It is marketed in the European Union under the brand name Foscan. The U.S. Food and Drug Administration (FDA) declined to approve Foscan in 2000. The EU approved its use in June 2001.

<span class="mw-page-title-main">Tetraphenylporphyrin</span> Chemical compound

Tetraphenylporphyrin, abbreviated TPP or H2TPP, is a synthetic heterocyclic compound that resembles naturally occurring porphyrins. Porphyrins are dyes and cofactors found in hemoglobin and cytochromes and are related to chlorophyll and vitamin B12. The study of naturally occurring porphyrins is complicated by their low symmetry and the presence of polar substituents. Tetraphenylporphyrin is hydrophobic, symmetrically substituted, and easily synthesized. The compound is a dark purple solid that dissolves in nonpolar organic solvents such as chloroform and benzene.

<span class="mw-page-title-main">Pheophorbide</span> Chemical compound

Pheophorbide or phaeophorbide is a product of chlorophyll breakdown and a derivative of pheophytin where both the central magnesium has been removed and the phytol tail has been hydrolyzed. It is used as a photosensitizer in photodynamic therapy.

In chemistry, tetradentate ligands are ligands that bind four donor atoms to a central atom to form a coordination complex. This number of donor atoms that bind is called denticity and is a method of classifying ligands.

<span class="mw-page-title-main">Chlorophyllide</span> Chemical compound

Chlorophyllide a and Chlorophyllide b are the biosynthetic precursors of chlorophyll a and chlorophyll b respectively. Their propionic acid groups are converted to phytyl esters by the enzyme chlorophyll synthase in the final step of the pathway. Thus the main interest in these chemical compounds has been in the study of chlorophyll biosynthesis in plants, algae and cyanobacteria. Chlorophyllide a is also an intermediate in the biosynthesis of bacteriochlorophylls.

<span class="mw-page-title-main">Dihydrosirohydrochlorin</span> Chemical compound

Dihydrosirohydrochlorin is one of several naturally occurring tetrapyrrole macrocyclic metabolic intermediates in the biosynthesis of vitamin B12 (cobalamin). Its oxidised form, sirohydrochlorin, is precursor to sirohaem, the iron-containing prosthetic group in sulfite reductase enzymes. Further biosynthetic transformations convert sirohydrochlorin to cofactor F430 for an enzyme which catalyzes the release of methane in the final step of methanogenesis.

Light harvesting materials harvest solar energy that can then be converted into chemical energy through photochemical processes. Synthetic light harvesting materials are inspired by photosynthetic biological systems such as light harvesting complexes and pigments that are present in plants and some photosynthetic bacteria. The dynamic and efficient antenna complexes that are present in photosynthetic organisms has inspired the design of synthetic light harvesting materials that mimic light harvesting machinery in biological systems. Examples of synthetic light harvesting materials are dendrimers, porphyrin arrays and assemblies, organic gels, biosynthetic and synthetic peptides, organic-inorganic hybrid materials, and semiconductor materials. Synthetic and biosynthetic light harvesting materials have applications in photovoltaics, photocatalysis, and photopolymerization.

<span class="mw-page-title-main">Transition metal porphyrin complexes</span>

Transition metal porphyrin complexes are a family of coordination complexes of the conjugate base of porphyrins. Iron porphyrin complexes occur widely in Nature, which has stimulated extensive studies on related synthetic complexes. The metal-porphyrin interaction is a strong one such that metalloporphyrins are thermally robust. They are catalysts and exhibit rich optical properties, although these complexes remain mainly of academic interest.

<span class="mw-page-title-main">Phosphorus porphyrin</span> Organophosphorus compound

Phosphorus-centered porphyrins are conjugated polycyclic ring systems consisting of either four pyrroles with inward-facing nitrogens and a phosphorus atom at their core or porphyrins with one of the four pyrroles substituted for a phosphole. Unmodified porphyrins are composed of pyrroles and linked by unsaturated hydrocarbon bridges often acting as multidentate ligands centered around a transition metal like Cu II, Zn II, Co II, Fe III. Being highly conjugated molecules with many accessible energy levels, porphyrins are used in biological systems to perform light-energy conversion and modified synthetically to perform similar functions as a photoswitch or catalytic electron carriers. Phosphorus III and V ions are much smaller than the typical metal centers and bestow distinct photochemical properties unto the porphyrin. Similar compounds with other pnictogen cores or different polycyclic rings coordinated to phosphorus result in other changes to the porphyrin’s chemistry.

References

  1. Gerard P. Moss (1988). "Nomenclature of Tetrapyrroles. Recommendations 1986". European Journal of Biochemistry. 178 (2): 277–328. doi: 10.1111/j.1432-1033.1988.tb14453.x . PMID   3208761.
  2. Battersby, Alan R. (2000). "Tetrapyrroles: The pigments of life". Natural Product Reports. 17 (6): 507–526. doi:10.1039/b002635m. PMID   11152419.
  3. Spikes, John D. (July 1990). "New trends in photobiology". Journal of Photochemistry and Photobiology B: Biology. 6 (3): 259–274. doi:10.1016/1011-1344(90)85096-F. PMID   2120404.
  4. K. Eszter, Borbas. Handbook of Porphyrin Science: 181: Chlorins. worldscientific. doi:10.1142/9789813149564_0001. ISBN   9814322326.
  5. Chew, Aline Gomez Maqueo; Bryant, Donald A. (2007). "Chlorophyll Biosynthesis in Bacteria: The Origins of Structural and Functional Diversity". Annual Review of Microbiology. 61: 113–129. doi:10.1146/annurev.micro.61.080706.093242. PMID   17506685.
  6. Battersby, Alan R. (2000). "Tetrapyrroles: The pigments of life: A Millennium review". Natural Product Reports. 17 (6): 507–526. doi:10.1039/B002635M. PMID   11152419.
  7. Taniguchi, Masahiko; Lindsey, Jonathan S. (2017). "Synthetic Chlorins, Possible Surrogates for Chlorophylls, Prepared by Derivatization of Porphyrins". Chemical Reviews. 117 (2): 344–535. doi:10.1021/acs.chemrev.5b00696. OSTI   1534468. PMID   27498781.
  8. Osuka, Atsuhiro; Kim, Dongho (2008). "Synthesis and Characterization of meso-Aryl-Substituted Subchlorins". Journal of the American Chemical Society. 130 (2): 438–439. doi:10.1021/ja078042b. PMID   18095693.
  9. Chandra, Brijesh; Soman, Rahul; Sathish Kumar, B.; Jose, K. V. Jovan; Panda, Pradeepta K. (3 Dec 2020). "Meso-Free Boron(III)subchlorin and Its μ-Oxo Dimer with Interacting Chromophores". Organic Letters. 22 (24): 9735–9739. doi:10.1021/acs.orglett.0c03813. PMID   33270460. S2CID   227282229.
  10. Soman, Rahul; Chandra, Brijesh; Bhat, Ishfaq A.; Kumar, B. Sathish; Hossain, Sk Saddam; Nandy, Sridatri; Jose, K. V. Jovan; Panda, Pradeepta K. (15 Jul 2021). "A2B- and A3-Type Boron(III)Subchlorins Derived from meso-Diethoxycarbonyltripyrrane: Synthesis and Photophysical Exploration". The Journal of Organic Chemistry. 86 (15): 10280–10287. doi:10.1021/acs.joc.1c01001. PMID   34264670. S2CID   235959639.