Chlorophyll d

Last updated
Chlorophyll d
Chlorophyll d structure.svg
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C54H71N4O6.Mg/c1-12-38-34(7)42-27-46-40(29-59)36(9)41(56-46)26-43-35(8)39(51(57-43)49-50(54(62)63-11)53(61)48-37(10)44(58-52(48)49)28-45(38)55-42)22-23-47(60)64-25-24-33(6)21-15-20-32(5)19-14-18-31(4)17-13-16-30(2)3;/h24,26-32,35,39,50H,12-23,25H2,1-11H3,(H-,55,56,57,58,59,61);/q-1;+2/p-1/b33-24+;/t31-,32-,35+,39+,50-;/m1./s1 Yes check.svgY
    Key: QXWRYZIMSXOOPY-SKHCYZARSA-M Yes check.svgY
  • InChI=1S/C54H71N4O6.Mg/c1-12-38-34(7)42-27-46-40(29-59)36(9)41(56-46)26-43-35(8)39(51(57-43)49-50(54(62)63-11)53(61)48-37(10)44(58-52(48)49)28-45(38)55-42)22-23-47(60)64-25-24-33(6)21-15-20-32(5)19-14-18-31(4)17-13-16-30(2)3;/h24,26-32,35,39,50H,12-23,25H2,1-11H3,(H-,55,56,57,58,59,61);/q-1;+2/p-1/b33-24+;/t31-,32-,35+,39+,50-;/m1./s1
  • CC(C)CCC[C@@H](C)CCC[C@@H](C)CCCC(\C)=C\COC(=O)CC[C@H]6[C@H](C)C=5/C=C/2\N\1[Mg]n4c(\C=C\3/N=C(/C=C/1C(\C=O)=C\2\C)C(/C)=C/3/CC)c(C)c7c4\C(=C6/N=5)[C@@H](C(=O)OC)C7=O
Properties
C54H70MgO6N4
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Chlorophyll d (Chl d) is a form of chlorophyll, identified by Harold Strain and Winston Manning in 1943. [1] It was unambiguously identified in Acaryochloris marina in the 1990s. [2] It is present in cyanobacteria which use energy captured from sunlight for photosynthesis. [3] Chl d absorbs far-red light, at 710 nm wavelength, just outside the optical range. [4] An organism that contains Chl d is adapted to an environment such as moderately deep water, where it can use far red light for photosynthesis, [5] although there is not a lot of visible light. [6]

Chl d is produced from chlorophyllide d by chlorophyll synthase. Chlorophyllide d is made from chlorophyllide a, but the oxygen-using enzyme that performs this conversion remains unknown as of 2022. [7]

Chlorophyll-d-3D-balls.png Chlorophyll-d-3D-spacefill.png
Ball-and-stick modelSpace-filling model

Related Research Articles

<span class="mw-page-title-main">Chlorophyll</span> Green pigments found in plants, algae and bacteria

Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words χλωρός, khloros and φύλλον, phyllon ("leaf"). Chlorophyll allow plants to absorb energy from light.

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a biological process used by many cellular organisms to convert light energy into chemical energy, which is stored in organic compounds that can later be metabolized through cellular respiration to fuel the organism's activities. The term usually refers to oxygenic photosynthesis, where oxygen is produced as a byproduct and some of the chemical energy produced is stored in carbohydrate molecules such as sugars, starch, glycogen and cellulose, which are synthesized from endergonic reaction of carbon dioxide with water. Most plants, algae and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the biological energy necessary for complex life on Earth.

Photobiology is the scientific study of the beneficial and harmful interactions of light in living organisms. The field includes the study of photophysics, photochemistry, photosynthesis, photomorphogenesis, visual processing, circadian rhythms, photomovement, bioluminescence, and ultraviolet radiation effects.

<span class="mw-page-title-main">Bacteriochlorophyll</span> Chemical compound

Bacteriochlorophylls (BChl) are photosynthetic pigments that occur in various phototrophic bacteria. They were discovered by C. B. van Niel in 1932. They are related to chlorophylls, which are the primary pigments in plants, algae, and cyanobacteria. Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but the process is anoxygenic and does not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria. Replacement of Mg2+ with protons gives bacteriophaeophytin (BPh), the phaeophytin form.

<span class="mw-page-title-main">Photosystem</span> Structural units of protein involved in photosynthesis

Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae, and cyanobacteria. These membranes are located inside the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: PSI and PSII.

Chlorophyll <i>a</i> Chemical compound

Chlorophyll a is a specific form of chlorophyll used in oxygenic photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light, and it is a poor absorber of green and near-green portions of the spectrum. Chlorophyll does not reflect light but chlorophyll-containing tissues appear green because green light is diffusively reflected by structures like cell walls. This photosynthetic pigment is essential for photosynthesis in eukaryotes, cyanobacteria and prochlorophytes because of its role as primary electron donor in the electron transport chain. Chlorophyll a also transfers resonance energy in the antenna complex, ending in the reaction center where specific chlorophylls P680 and P700 are located.

Far-red light is a range of light at the extreme red end of the visible spectrum, just before infrared light. Usually regarded as the region between 700 and 750 nm wavelength, it is dimly visible to human eyes. It is largely reflected or transmitted by plants because of the absorbance spectrum of chlorophyll, and it is perceived by the plant photoreceptor phytochrome. However, some organisms can use it as a source of energy in photosynthesis. Far-red light also is used for vision by certain organisms such as some species of deep-sea fishes and mantis shrimp.

Chlorophyll <i>b</i> Chemical compound

Chlorophyll b is a form of chlorophyll. Chlorophyll b helps in photosynthesis by absorbing light energy. It is more soluble than chlorophyll a in polar solvents because of its carbonyl group. Its color is green, and it primarily absorbs blue light.

A light-harvesting complex consists of a number of chromophores which are complex subunit proteins that may be part of a larger super complex of a photosystem, the functional unit in photosynthesis. It is used by plants and photosynthetic bacteria to collect more of the incoming light than would be captured by the photosynthetic reaction center alone. The light which is captured by the chromophores is capable of exciting molecules from their ground state to a higher energy state, known as the excited state. This excited state does not last very long and is known to be short-lived.

Photoprotection is the biochemical process that helps organisms cope with molecular damage caused by sunlight. Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions. Humans and other animals have also developed photoprotective mechanisms to avoid UV photodamage to the skin, prevent DNA damage, and minimize the downstream effects of oxidative stress.

<span class="mw-page-title-main">Biological pigment</span> Substances produced by living organisms

Biological pigments, also known simply as pigments or biochromes, are substances produced by living organisms that have a color resulting from selective color absorption. Biological pigments include plant pigments and flower pigments. Many biological structures, such as skin, eyes, feathers, fur and hair contain pigments such as melanin in specialized cells called chromatophores. In some species, pigments accrue over very long periods during an individual's lifespan.

<span class="mw-page-title-main">Photoinhibition</span>

Photoinhibition is light-induced reduction in the photosynthetic capacity of a plant, alga, or cyanobacterium. Photosystem II (PSII) is more sensitive to light than the rest of the photosynthetic machinery, and most researchers define the term as light-induced damage to PSII. In living organisms, photoinhibited PSII centres are continuously repaired via degradation and synthesis of the D1 protein of the photosynthetic reaction center of PSII. Photoinhibition is also used in a wider sense, as dynamic photoinhibition, to describe all reactions that decrease the efficiency of photosynthesis when plants are exposed to light.

<span class="mw-page-title-main">Protochlorophyllide reductase</span>

In enzymology, protochlorophyllide reductases (POR) are enzymes that catalyze the conversion from protochlorophyllide to chlorophyllide a. They are oxidoreductases participating in the biosynthetic pathway to chlorophylls.

Chlorophyll c refers to forms of chlorophyll found in certain marine algae, including the photosynthetic Chromista and dinoflagellates. These pigments are characterized by their unusual chemical structure, with a porphyrin as opposed to the chlorin as the core; they also do not have an isoprenoid tail. Both these features stand out from the other chlorophylls commonly found in algae and plants.

<span class="mw-page-title-main">Anoxygenic photosynthesis</span> Process used by obligate anaerobes

Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used and the byproduct generated.

<i>Acaryochloris marina</i> Species of bacterium

Acaryochloris marina is a symbiotic species of the phylum Cyanobacteria that produces chlorophyll d, allowing it to use far-red light, at 770 nm wavelength.

Chlorophyll <i>f</i> Chemical compound

Chlorophyll f is a type form of chlorophyll that absorbs further in the red than other chlorophylls. In 2010, it was reported by Min Chen to be present in stromatolites from Western Australia's Shark Bay.

<span class="mw-page-title-main">Min Chen (biologist)</span>

Min Chen is an Australian plant physiologist. She was born in China and educated in Northeast Normal University China - BSc in 1984 and MSc in 1987 and received her PhD in 2003 from The University of Sydney Australia. She is a full professor and Australian Research Council Future Fellow in the School of Biological Sciences at the University of Sydney. Her research is primarily concerned with elucidating the molecular and biochemical mechanism of the energy-storing reactions in photosynthetic organisms, especially the function of novel photopigments in oxygenic photosynthetic bacteria.

<span class="mw-page-title-main">Chlorophyllide-a oxygenase</span> Class of enzymes

Chlorophyllide-a oxygenase (EC 1.14.13.122), chlorophyllide a oxygenase, chlorophyll-b synthase, CAO) is an enzyme with systematic name chlorophyllide-a:oxygen 7-oxidoreductase. This enzyme catalyses the following chemical reactions

<span class="mw-page-title-main">Chlorophyllide</span> Chemical compound

Chlorophyllide a and Chlorophyllide b are the biosynthetic precursors of chlorophyll a and chlorophyll b respectively. Their propionic acid groups are converted to phytyl esters by the enzyme chlorophyll synthase in the final step of the pathway. Thus the main interest in these chemical compounds has been in the study of chlorophyll biosynthesis in plants, algae and cyanobacteria. Chlorophyllide a is also an intermediate in the biosynthesis of bacteriochlorophylls.

References

  1. Manning WM, Strain HH (November 1943). "Chlorophyll d, a green pigment of red algae" (PDF). Journal of Biological Chemistry. 151 (1): 1–9. doi: 10.1016/S0021-9258(18)72109-1 .
  2. Larkum AW, Kühl M (August 2005). "Chlorophyll d: the puzzle resolved" (PDF). Trends in Plant Science. 10 (8): 355–7. doi:10.1016/j.tplants.2005.06.005. PMID   16019251. Archived from the original (PDF) on 2012-03-13. Retrieved 2014-11-17.
  3. "Photosynthetic Pigments". University of California Museum of Paleontology.
  4. "Scientists discover first new chlorophyll in 60 years". PHYS ORG. August 20, 2010.
  5. "Researchers decode genetics of chlorophyll d". News Medical Life Sciences. AZO Network.
  6. "Chlorophyll d". Biology Online. 7 October 2019.
  7. Tsuzuki, Yuki; Tsukatani, Yusuke; Yamakawa, Hisanori; Itoh, Shigeru; Fujita, Yuichi; Yamamoto, Haruki (29 March 2022). "Effects of Light and Oxygen on Chlorophyll d Biosynthesis in a Marine Cyanobacterium Acaryochloris marina". Plants. 11 (7): 915. doi: 10.3390/plants11070915 . PMC   9003380 . PMID   35406896.