Corrinoid

Last updated
Corrin ring, numbered according to the 1975 IUPAC standard. Note that for consistency with the porphyrin numbering system, there is no 20 position. Positions 21-24 were numbered 20-23 in earlier literature. Corrin-IUPAC.svg
Corrin ring, numbered according to the 1975 IUPAC standard. Note that for consistency with the porphyrin numbering system, there is no 20 position. Positions 21-24 were numbered 20-23 in earlier literature.
Vitamin B12 (cyanocobalamin) VitaminB12.png
Vitamin B12 (cyanocobalamin)

Corrinoids are a group of compounds based on the skeleton of corrin, a cyclic system containing four pyrrole rings similar to porphyrins. [2] These include compounds based on octadehydrocorrin, which has the trivial name corrole. [3]

Contents

The cobalamins (vitamin B12) are the best known members of the group. Other prominent examples include cobyrinic acid and its hexaamide cobyric acid; cobinic acid and its hexaamide cobinamide; cobamic acid and cobamide.

Compounds containing the "Cob-" prefix (notcorrin) are cobalt derivatives, and may include an oxidation state, as in "Cob(II)alamin". When cobalt is replaced by another metal or hydrogen, the name changes accordingly, as in ferrobamic acid or hydrogenobamic acid.

Reactions with cyanide

A solution of aquacyano-corrinoids, such as cobalamin or cobinamide, reacts with free cyanide in an aqueous sample. The binding of cyanide to the corrinoid cobalt center leads to a color change from orange to violet. [4] Quantification of the cyanide content is feasible by UV-vis spectroscopy. [5] [6] Absorption of the corrinoid on a solid phase, [7] allows detection of cyanide even in colored samples, rendering this method appropriate for the analysis of cyanide in water, wastewater, blood, and food. [8] [9] Furthermore, this technology is non-toxic and considerably less prone to interference than the pyridine-barbituric acid colorimetry method.

Related Research Articles

<span class="mw-page-title-main">Corrin</span> Chemical compound

Corrin is a heterocyclic compound. Although not known to exist on its own, the molecule is of interest as the parent macrocycle related to the cofactor and chromophore in vitamin B12. Its name reflects that it is the "core" of vitamin B12 (cobalamins). Compounds with a corrin core are known as "corrins".

<span class="mw-page-title-main">Metalloprotein</span> Protein that contains a metal ion cofactor

Metalloprotein is a generic term for a protein that contains a metal ion cofactor. A large proportion of all proteins are part of this category. For instance, at least 1000 human proteins contain zinc-binding protein domains although there may be up to 3000 human zinc metalloproteins.

<span class="mw-page-title-main">Group 9 element</span> Group of chemical elements

Group 9, by modern IUPAC numbering, is a group (column) of chemical elements in the d-block of the periodic table. Members of Group 9 include cobalt (Co), rhodium (Rh), iridium (Ir) and meitnerium (Mt). These elements are among the rarest of the transition metals.

Bioinorganic chemistry is a field that examines the role of metals in biology. Bioinorganic chemistry includes the study of both natural phenomena such as the behavior of metalloproteins as well as artificially introduced metals, including those that are non-essential, in medicine and toxicology. Many biological processes such as respiration depend upon molecules that fall within the realm of inorganic chemistry. The discipline also includes the study of inorganic models or mimics that imitate the behaviour of metalloproteins.

<span class="mw-page-title-main">Methionine synthase</span> Mammalian protein found in Homo sapiens

Methionine synthase (MS, MeSe, MTR) is primarily responsible for the regeneration of methionine from homocysteine in most individuals. In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle. There are two primary forms of this enzyme, the Vitamin B12 (cobalamin)-dependent (MetH) and independent (MetE) forms, although minimal core methionine synthases that do not fit cleanly into either category have also been described in some anaerobic bacteria. The two dominant forms of the enzymes appear to be evolutionary independent and rely on considerably different chemical mechanisms. Mammals and other higher eukaryotes express only the cobalamin-dependent form. In contrast, the distribution of the two forms in Archaeplastida (plants and algae) is more complex. Plants exclusively possess the cobalamin-independent form, while algae have either one of the two, depending on species. Many different microorganisms express both the cobalamin-dependent and cobalamin-independent forms.

<span class="mw-page-title-main">Methylcobalamin</span> Form of vitamin B12

Methylcobalamin (mecobalamin, MeCbl, or MeB12) is a cobalamin, a form of vitamin B12. It differs from cyanocobalamin in that the cyano group at the cobalt is replaced with a methyl group. Methylcobalamin features an octahedral cobalt(III) centre and can be obtained as bright red crystals. From the perspective of coordination chemistry, methylcobalamin is notable as a rare example of a compound that contains metal–alkyl bonds. Nickel–methyl intermediates have been proposed for the final step of methanogenesis.

<span class="mw-page-title-main">Hydroxocobalamin</span> Form of vitamin B12

Hydroxocobalamin, also known as vitamin B12a and hydroxycobalamin, is a vitamin found in food and used as a dietary supplement. As a supplement it is used to treat vitamin B12 deficiency including pernicious anemia. Other uses include treatment for cyanide poisoning, Leber's optic atrophy, and toxic amblyopia. It is given by injection into a muscle or vein, by pill or sublingually.

<span class="mw-page-title-main">Cobalamin riboswitch</span>

Cobalamin riboswitch is a cis-regulatory element which is widely distributed in 5' untranslated regions of vitamin B12 (Cobalamin) related genes in bacteria.

<span class="mw-page-title-main">Precorrin-2 C20-methyltransferase</span>

In enzymology, a precorrin-2 C20-methyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Precorrin-8X methylmutase</span>

In enzymology, a precorrin-8X methylmutase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cobalt chelatase</span> Enzyme

Cobalt chelatase (EC 6.6.1.2) is an enzyme that catalyzes the chemical reaction

Vitamin B<sub><small>12</small></sub> Vitamin used in animal cell metabolism

Vitamin B12, also known as cobalamin, is a water-soluble vitamin involved in metabolism. It is one of eight B vitamins. It is required by animals, which use it as a cofactor in DNA synthesis, and in both fatty acid and amino acid metabolism. It is important in the normal functioning of the nervous system via its role in the synthesis of myelin, and in the circulatory system in the maturation of red blood cells in the bone marrow. Plants do not need cobalamin and carry out the reactions with enzymes that are not dependent on it.

<span class="mw-page-title-main">Cyanocobalamin</span> Form of vitamin B-12

Cyanocobalamin is a form of vitamin B
12
used to treat and prevent vitamin B
12
deficiency
except in the presence of cyanide toxicity. The deficiency may occur in pernicious anemia, following surgical removal of the stomach, with fish tapeworm, or due to bowel cancer. It is used by mouth, by injection into a muscle, or as a nasal spray.

<span class="mw-page-title-main">Organocobalt chemistry</span> Chemistry of compounds with a carbon to cobalt bond

Organocobalt chemistry is the chemistry of organometallic compounds containing a carbon to cobalt chemical bond. Organocobalt compounds are involved in several organic reactions and the important biomolecule vitamin B12 has a cobalt-carbon bond. Many organocobalt compounds exhibit useful catalytic properties, the preeminent example being dicobalt octacarbonyl.

The total synthesis of the complex biomolecule vitamin B12 was accomplished in two different approaches by the collaborating research groups of Robert Burns Woodward at Harvard and Albert Eschenmoser at ETH in 1972. The accomplishment required the effort of no less than 91 postdoctoral researchers (Harvard: 77, ETH: 14), and 12 Ph.D. students (at ETH) from 19 different nations over a period of almost 12 years. The synthesis project induced and involved a major change of paradigm in the field of natural product synthesis.

<span class="mw-page-title-main">Vitamin B12-binding domain</span> Type of protein domain

In molecular biology, the vitamin B12-binding domain is a protein domain which binds to cobalamin. It can bind two different forms of the cobalamin cofactor, with cobalt bonded either to a methyl group (methylcobalamin) or to 5'-deoxyadenosine (adenosylcobalamin). Cobalamin-binding domains are mainly found in two families of enzymes present in animals and prokaryotes, which perform distinct kinds of reactions at the cobalt-carbon bond. Enzymes that require methylcobalamin carry out methyl transfer reactions. Enzymes that require adenosylcobalamin catalyse reactions in which the first step is the cleavage of adenosylcobalamin to form cob(II)alamin and the 5'-deoxyadenosyl radical, and thus act as radical generators. In both types of enzymes the B12-binding domain uses a histidine to bind the cobalt atom of cobalamin cofactors. This histidine is embedded in a DXHXXG sequence, the most conserved primary sequence motif of the domain. Proteins containing the cobalamin-binding domain include:

<span class="mw-page-title-main">Cob(I)yrinic acid a,c-diamide adenosyltransferase</span> Class of enzymes

In molecular biology, cob(I)yrinic acid a,c-diamide adenosyltransferase EC 2.5.1.17 is an enzyme which catalyses the conversion of cobalamin into one of its coenzyme forms, adenosylcobalamin. Adenosylcobalamin is required as a cofactor for the activity of certain enzymes. AdoCbl contains an adenosyl moiety liganded to the cobalt ion of cobalamin via a covalent Co-C bond.

<span class="mw-page-title-main">Cobalamin biosynthesis</span>

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

Cobalt-precorrin-5B (C1)-methyltransferase (EC 2.1.1.195), cobalt-precorrin-6A synthase, CbiD (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:cobalt-precorrin-5B (C1)-methyltransferase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Cobalt in biology</span> Use of Cobalt by organisms

Cobalt is essential to the metabolism of all animals. It is a key constituent of cobalamin, also known as vitamin B12, the primary biological reservoir of cobalt as an ultratrace element. Bacteria in the stomachs of ruminant animals convert cobalt salts into vitamin B12, a compound which can only be produced by bacteria or archaea. A minimal presence of cobalt in soils therefore markedly improves the health of grazing animals, and an uptake of 0.20 mg/kg a day is recommended because they have no other source of vitamin B12.

References

  1. Dorothy Crowfoot Hodgkin (1965-11-16). "The Structure of the Corrin Nucleus from X-ray Analysis". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 288 (1414): 294–305. Bibcode:1965RSPSA.288..294H. doi:10.1098/rspa.1965.0219. JSTOR   2415001. S2CID   95235740.
  2. Cracan, Valentin; Banerjee, Ruma (2013). "Chapter 10 Cobalt and Corrinoid Transport and Biochemistry". In Banci, Lucia (ed.). Metallomics and the Cell. Metal Ions in Life Sciences. Vol. 12. Springer. pp. 333–374. doi:10.1007/978-94-007-5561-1_10. ISBN   978-94-007-5560-4. PMID   23595677. electronic-book ISBN   978-94-007-5561-1 ISSN   1559-0836 electronic- ISSN   1868-0402
  3. "The Nomenclature of Corrinoids: Recommendations 1975". IUPAC-IUB Commission on Biochemical Nomenclature (CBN). 1975. Archived from the original on 2012-10-28. Retrieved 2006-06-19.
  4. Pratt, J.M. (1972). Inorganic Chemistry of Vitamin B12. Academic Press. p. 44.
  5. Zelder, F.H. (2008). "Specific Colorimetric Detection of Cyanide Triggered by a Conformational Switch in Vitamin B12". Inorganic Chemistry. 47 (4): 1264–1266. doi:10.1021/ic702368b. PMID   18205304.
  6. Mannel-Croise, Zelder (2009). "Side chains of cobalt corrinoids control the sensitivity and selectivity in the colorimetric detection of cyanide". Inorganic Chemistry. 48 (4): 1272–1274. doi:10.1021/ic900053h. PMID   19161297.
  7. Mannel-Croise, Zelder (2012). "Complex samples cyanide detection with immobilized corrinoids". ACS Applied Materials & Interfaces. 4 (2): 725–729. doi:10.1021/am201357u. PMID   22211318.
  8. Tivana, Da Cruz Francisco, Zelder, Bergenståhl, Dejmek (2014). "Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products" (PDF). Food Chemistry. 158: 20–27. doi:10.1016/j.foodchem.2014.02.066. PMID   24731309.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Mannel-Croise, Zelder (2012). "Rapid visual detection of blood cyanide" (PDF). Analytical Methods. 4 (9): 2632–2634. doi:10.1039/c2ay25595b. S2CID   96719554.