Molybdenum monophosphide

Last updated
Molybdenum monophosphide
MoP unit cell.png
Names
IUPAC name
Phosphanylidynemolybdenum
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.032.090 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-312-8
PubChem CID
  • InChI=1S/Mo.P
    Key: AMWVZPDSWLOFKA-UHFFFAOYSA-N
  • [Mo]#P
Properties
MoP
Molar mass 126.92 g·mol−1
Appearanceblack crystals
Density 7.34 g/cm3
insoluble
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H319, H335
P261, P280, P304, P305, P338, P340, P351, P405, P501
Related compounds
Related compounds
Trimolybdenum phosphide, molybdenum diphosphide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Molybdenum monophosphide is a binary inorganic compound of molybdenum metal and phosphorus with the chemical formula MoP. [1] [2] [3]

Contents

Preparation

Molybdenum monophosphide can be obtained from electrolysis of molten molybdenum hexametaphosphate: [4]

4 Mo(PO3)6 → 4 MoP + 10 P2O5 + 9 O2

It can also be prepared from heating of a mixture of molybdenum and metaphosphoric acid in a carbon crucible:

2 Mo + 2 HPO3 + 5 C → 2 MoP + 5 CO + H2O

Other reactions are known too. [5] [6]

Properties

Molybdenum monophosphide forms black crystals of hexagonal crystal system with space group P6m2. [7] It is insoluble in water. Molybdenum monophosphide decomposes when heated in air:

4 MoP + 11 O2 → 4 MoO3 + 2 P2O5

Uses

Molybdenum monophosphide can be used as a catalyst. [8] [9]

Related Research Articles

<span class="mw-page-title-main">Molybdenum</span> Chemical element with atomic number 42 (Mo)

Molybdenum is a chemical element; it has symbol Mo and atomic number 42. The name derived from Ancient Greek Μόλυβδος molybdos, meaning lead, since its ores were confused with lead ores. Molybdenum minerals have been known throughout history, but the element was discovered in 1778 by Carl Wilhelm Scheele. The metal was first isolated in 1781 by Peter Jacob Hjelm.

<span class="mw-page-title-main">Molybdenum disulfide</span> Chemical compound

Molybdenum disulfide is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is MoS
2
.

Molybdenum trioxide describes a family of inorganic compounds with the formula MoO3(H2O)n where n = 0, 1, 2. The anhydrous compound is produced on the largest scale of any molybdenum compound since it is the main intermediate produced when molybdenum ores are purified. The anhydrous oxide is a precursor to molybdenum metal, an important alloying agent. It is also an important industrial catalyst. It is a yellow solid, although impure samples can appear blue or green.

<span class="mw-page-title-main">Sodium phosphide</span> Chemical compound

Sodium phosphide is the inorganic compound with the formula Na3P. It is a black solid. It is often described as Na+ salt of the P3− anion. Na3P is a source of the highly reactive phosphide anion. It should not be confused with sodium phosphate, Na3PO4.

Germanium dioxide, also called germanium(IV) oxide, germania, and salt of germanium, is an inorganic compound with the chemical formula GeO2. It is the main commercial source of germanium. It also forms as a passivation layer on pure germanium in contact with atmospheric oxygen.

Molybdenum dioxide is the chemical compound with the formula MoO2. It is a violet-colored solid and is a metallic conductor. The mineralogical form of this compound is called tugarinovite, and is only very rarely found.

<span class="mw-page-title-main">Molybdenum hexafluoride</span> Chemical compound

Molybdenum hexafluoride, also molybdenum(VI) fluoride, is the inorganic compound with the formula MoF6. It is the highest fluoride of molybdenum. It is a colourless solid and melts just below room temperature and boils in 34 °C. It is one of the seventeen known binary hexafluorides.

<span class="mw-page-title-main">Molybdate</span> Chemical compound of the form –O–MoO₂–O–

In chemistry, a molybdate is a compound containing an oxyanion with molybdenum in its highest oxidation state of 6: O−Mo(=O)2−O. Molybdenum can form a very large range of such oxyanions, which can be discrete structures or polymeric extended structures, although the latter are only found in the solid state. The larger oxyanions are members of group of compounds termed polyoxometalates, and because they contain only one type of metal atom are often called isopolymetalates. The discrete molybdenum oxyanions range in size from the simplest MoO2−
4
, found in potassium molybdate up to extremely large structures found in isopoly-molybdenum blues that contain for example 154 Mo atoms. The behaviour of molybdenum is different from the other elements in group 6. Chromium only forms the chromates, CrO2−
4
, Cr
2
O2−
7
, Cr
3
O2−
10
and Cr
4
O2−
13
ions which are all based on tetrahedral chromium. Tungsten is similar to molybdenum and forms many tungstates containing 6 coordinate tungsten.

<span class="mw-page-title-main">Molybdenum diselenide</span> Chemical compound

Molybdenum diselenide is an inorganic compound of molybdenum and selenium. Its structure is similar to that of MoS
2
. Compounds of this category are known as transition metal dichalcogenides, abbreviated TMDCs. These compounds, as the name suggests, are made up of a transition metals and elements of group 16 on the periodic table of the elements. Compared to MoS
2
, MoSe
2
exhibits higher electrical conductivity.

Lithium phosphide is an inorganic compound of lithium and phosphorus with the chemical formula Li3P. This dark colored compound is formally the lithium salt of phosphine, consisting of lithium cations Li+ and phosphide anions P3−. It is hazardous to handle because of its high reactivity toward air.

<span class="mw-page-title-main">Scandium phosphide</span> Chemical compound

Scandium phosphide is an inorganic compound of scandium and phosphorus with the chemical formula ScP.

Praseodymium monophosphide is an inorganic compound of praseodymium and phosphorus with the chemical formula PrP. The compound forms crystals.

Samarium(III) phosphide is an inorganic compound of samarium and phosphorus with the chemical formula SmP.

Thulium phosphide is an inorganic compound of thulium and phosphorus with the chemical formula TmP.

Ytterbium compounds are chemical compounds that contain the element ytterbium (Yb). The chemical behavior of ytterbium is similar to that of the rest of the lanthanides. Most ytterbium compounds are found in the +3 oxidation state, and its salts in this oxidation state are nearly colorless. Like europium, samarium, and thulium, the trihalides of ytterbium can be reduced to the dihalides by hydrogen, zinc dust, or by the addition of metallic ytterbium. The +2 oxidation state occurs only in solid compounds and reacts in some ways similarly to the alkaline earth metal compounds; for example, ytterbium(II) oxide (YbO) shows the same structure as calcium oxide (CaO).

Holmium nitride is a binary inorganic compound of holmium and nitrogen with the chemical formula HoN.

Zirconium monophosphide is a binary inorganic compound of zirconium metal and phosphorus with the chemical formula ZrP.

Trimolybdenum phosphide is a binary inorganic compound of molybdenum metal and phosphorus with the chemical formula Mo3P.

Molybdenum diphosphide is a binary inorganic compound of molybdenum metal and phosphorus with the chemical formula MoP2.

Diruthenium phosphide is a binary inorganic compound of ruthenium metal and phosphorus with the chemical formula Ru2P.

References

  1. "Molybdenum Phosphide". American Elements . Retrieved 8 March 2024.
  2. Toxic Substances Control Act (TCSA) Chemical Substance Inventory: Cumulative Supplement to the Original Inventory. User Guide and Indices. U.S. Environment Protection Agency, Office of Toxic Substances. 1980. p. 14. Retrieved 8 March 2024.
  3. Lide, David R. (29 June 2004). CRC Handbook of Chemistry and Physics, 85th Edition. CRC Press. p. 4-70. ISBN   978-0-8493-0485-9 . Retrieved 8 March 2024.
  4. Conrad, Ulrich (1935). Die Elektrolyse von Molybdänsäure in Phosphatschmelzen (in German). Technische Hochschule zu Breslau. p. 13. Retrieved 8 March 2024.
  5. Yao, Z. W.; Wang, Li; Dong, Haitao (3 April 2009). "A new approach to the synthesis of molybdenum phosphide via internal oxidation and reduction route". Journal of Alloys and Compounds . 473 (1): L10–L12. doi:10.1016/j.jallcom.2008.05.048. ISSN   0925-8388 . Retrieved 8 March 2024.
  6. Hui, Ge; Xingchen, Liu; Shanmin, Wang; Tao, Yang; Xiaodong, Wen (8 February 2017). Innovative Applications of Mo(W)-Based Catalysts in the Petroleum and Chemical Industry: Emerging Research and Opportunities: Emerging Research and Opportunities. IGI Global. p. 66. ISBN   978-1-5225-2275-1 . Retrieved 8 March 2024.
  7. "mp-219: MoP (Hexagonal, P-6m2, 187)". Materials Project . Retrieved 8 March 2024.
  8. Xiao, Peng; Sk, Mahasin Alam; Thia, Larissa; Ge, Xiaoming; Lim, Rern Jern; Wang, Jing-Yuan; Lim, Kok Hwa; Wang, Xin (18 July 2014). "Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction". Energy & Environmental Science . 7 (8): 2624–2629. doi:10.1039/C4EE00957F. hdl: 10356/103094 . ISSN   1754-5706 . Retrieved 8 March 2024.
  9. Issues in Chemical Engineering and other Chemistry Specialties: 2011 Edition. ScholarlyEditions. 9 January 2012. p. 560. ISBN   978-1-4649-6354-4 . Retrieved 8 March 2024.