Phosphidogermanate

Last updated

Phosphidogermanates are chemical compounds that have phosphorus bound to germanium to yield anions. They are in the category of phosphidotetrelates and also pnictides. They are analogous to nitridogermanates, phosphidoaluminates, phosphidogallates, phosphidoindates, phosphidosilicates or phosphidostannates.

They are under investigation as infrared non-linear optic materials [1] and solid-state electrolytes. [2]

List

formulanameMWcrystal

system

space

group

unit cell Åvolumedensityformpropertiesreferences
GePmonoclinicC2/ma = 15.1948 b = 3.6337 c = 9.1941 β = 101.239° [3]
Li2GeP2148.458tetragonalI41/acda = 12.3069 c = 19.0306 Z=322882.422.736Ge4P10 supratetrahedrared [4]
LiGe3P3317.751orthorhombicPbama = 9.8459 b = 15.7489 c = 3.5995 Z=4558.153.780GeP4 and Ge(P3Ge) tetrahedra in

5 and 6-membered rings making 2D slabs

black [4]
Li8GeP4252Pa3a=11.80203 c=11.80203 Z=81643.882.037 [5] [6]
Li8GeP4251.99cubicP43na=11.77294 Z=81635.982.046 [5] [6]
Li14GeP6cubicFm3ma=5.95667 Z=41.860brown [2] [7]
Li10.1Ge5PPnmaa=10.360 b=4.3072 c=24.267 Z=41082.82.86Ge5 ringsblack; actually is a germanide phosphide [8]
NaGe3P3orthorhombicPmc21a=3.6276 b=8.407 c=10.332 Z=2315.093.517Ge3P7 ringred; band gap 2.06 eV; semiconductor [9]
Na2Ge3P3356.72monoclinicC2/ma = 17.639 b = 3.6176 c = 11.354 β = 92.74° Z=4723.73.274black [10]
Na5Ge7P5monoclinicC2/ma = 16.168 b = 3.6776 c = 12.924 β = 91.30° Z=2768.23.343black [10]
Na8GeP4380.4cubicFd3ma=13.4230 Z=82418.532.08943same as Na8SnSb4black; decomposes over 350°C to Na10Ge2P6;band gap 1.9 eV [5]
Na10Ge2P6monoclinicP21/na=13.176 b =7.36.4 c=8.042 β=90.26° Z=2780.292.38beige; moisture sensitive [11]
CuGe2P3 [12]
ZnGeP2I42da=5.466 c=10.722melt 1027°C [1] [13] [14] [15]
Ag6Ge10P121744.76cubicI43ma=10.3111 Z=21096.35.286air stable; silver grey; thermoelectric [16] [17] [18]
CdGeP2I42da=5.740 c=10.773 [19]
Cs5GeP3orthorhombicPnmaa=14.31 b=5.994 c=15.618 Z=4metallic [20]
BaGe2P2344.46tetragonalP42mca =7.6153 c =8.490 Z=4492.34.647light metallic grey; melt 861 °C [21]

Related Research Articles

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

The inorganic imides are compounds containing an ion composed of nitrogen bonded to hydrogen with formula HN2−. Organic imides have the NH group, and two single or one double covalent bond to other atoms. The imides are related to the inorganic amides (H2N), the nitrides (N3−) and the nitridohydrides (N3−•H).

The telluride phosphides are a class of mixed anion compounds containing both telluride and phosphide ions. The phosphidotelluride or telluridophosphide compounds have a [TeP]3− group in which the tellurium atom has a bond to the phosphorus atom. A formal charge of −2 is on the phosphorus and −1 on the tellurium. There is no binary compound of tellurium and phosphorus. Not many telluride phosphides are known, but they have been discovered for noble metals, actinides, and group 4 elements.

Nitride fluorides containing nitride and fluoride ions with the formula NF4-. They can be electronically equivalent to a pair of oxide ions O24-. Nitride fluorides were discovered in 1996 by Lavalle et al. They heated diammonium technetium hexafluoride to 300 °C to yield TcNF. Another preparation is to heat a fluoride compound with a nitride compound in a solid state reaction. The fluorimido ion is F-N2- and is found in a rhenium compound.

A selenite fluoride is a chemical compound or salt that contains fluoride and selenite anions. These are mixed anion compounds. Some have third anions, including nitrate, molybdate, oxalate, selenate, silicate and tellurate.

The borophosphates are mixed anion compounds containing borate and phosphate anions, which may be joined together by a common oxygen atom. Compounds that contain water or hydroxy groups can also be included in the class of compounds.

Selenogallates are chemical compounds which contain anionic units of selenium connected to gallium. They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates. They are in the category of chalcogenotrielates or more broadly chalcogenometallates.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

A chloride nitride is a mixed anion compound containing both chloride (Cl) and nitride ions (N3−). Another name is metallochloronitrides. They are a subclass of halide nitrides or pnictide halides.

A Phosphide chloride is a mixed anion compound containing both phosphide (P3−) and chloride (Cl) ions.

Phosphide silicides or silicide phosphides or silicophosphides are compounds containing anions composed of silicide (Si4−) and phosphide (P3−). They can be considered as mixed anion compounds. They are distinct from the phosphidosilicates, which have the phosphorus bonded to the silicon. Related compounds include the phosphide carbides, germanide phosphides, nitride silicides, and antimonide silicides.

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

Arsenidogermanates are chemical compounds that contain anions with arsenic bonded to germanium. They are in the category of tetrelarsenides, pnictidogermanates, or tetrelpnictides.

Arsenidostanates are chemical compounds that contain anions with arsenic bonded to tin. They are in the category of tetrelarsenides, pnictidostancates, or tetrelpnictides.

<span class="mw-page-title-main">Lanthanum phosphide</span> Chemical compound

Lanthanum phosphide is an inorganic compound of lanthanum and phosphorus with the chemical formula LaP.

Selenidogermanates are compounds with anions with selenium bound to germanium. They are analogous with germanates, thiogermanates, and telluridogermanates.

Phosphide iodides or iodide phosphides are compounds containing anions composed of iodide (I) and phosphide (P3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the phosphide chlorides, arsenide iodides antimonide iodides and phosphide bromides.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

An iodide nitride is a mixed anion compound containing both iodide (I) and nitride ions (N3−). Another name is metalloiodonitrides. They are a subclass of halide nitrides or pnictide halides. Some different kinds include ionic alkali or alkaline earth salts, small clusters where metal atoms surround a nitrogen atom, layered group 4 element 2-dimensional structures, and transition metal nitrido complexes counter-balanced with iodide ions. There is also a family with rare earth elements and nitrogen and sulfur in a cluster.

<span class="mw-page-title-main">Strontium selenide</span> Chemical compound

Strontium selenide is an inorganic compound with the chemical formula SrSe.

References

  1. 1 2 Yang, He‐Di; Ran, Mao‐Yin; Wei, Wen‐Bo; Wu, Xin‐Tao; Lin, Hua; Zhu, Qi‐Long (2021-11-02). "The Rise of Infrared Nonlinear Optical Pnictides: Advances and Outlooks". Chemistry – an Asian Journal. 16 (21): 3299–3310. doi:10.1002/asia.202100935. ISSN   1861-4728. PMID   34469055. S2CID   237372337.
  2. 1 2 Strangmueller, Stefan; Eickhoff, Henrik; Mueller, David; Klein, Wilhelm; Raudaschl-Sieber, Gabriele; Kirchhain, Holger; Sedlmeier, Christian; Baran, Volodymyr; Senyshyn, Anatolyi; Deringer, Volker L.; van Wüllen, Leo; Gasteiger, Hubert A.; Fässler, Thomas Friedrich (2020-11-23). "Fast Lithium Ionic Conductors Li 14 SiP 6 , Li 14 GeP 6 , and Li 14 SnP 6 – Structure-Property-Relationships in the Newly Discovered Family of Lithium Phosphidotetrelates". ECS Meeting Abstracts. MA2020-02 (5): 874. doi:10.1149/MA2020-025874mtgabs. ISSN   2151-2043. S2CID   234511163.
  3. Shen, Hailin; Ma, Zhongtao; Yang, Bingchao; Guo, Bingkun; Lyu, Yingchun; Wang, Peng; Yang, Hangsheng; Li, Qianqian; Wang, Hongtao; Liu, Zhongyuan; Nie, Anmin (September 2019). "Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries". Journal of Power Sources. 433: 126682. Bibcode:2019JPS...43326682S. doi:10.1016/j.jpowsour.2019.05.088. S2CID   195416712.
  4. 1 2 Eickhoff, Henrik; Sedlmeier, Christian; Klein, Wilhelm; Raudaschl‐Sieber, Gabriele; Gasteiger, Hubert A.; Fässler, Thomas F. (2020-02-14). "Polyanionic Frameworks in the Lithium Phosphidogermanates Li 2 GeP 2 and LiGe 3 P 3 – Synthesis, Structure, and Lithium Ion Mobility". Zeitschrift für anorganische und allgemeine Chemie. 646 (3): 95–102. doi: 10.1002/zaac.201900228 . ISSN   0044-2313. S2CID   214226863.
  5. 1 2 3 Fässler, Thomas Friedrich; Botta, Manuel; Zeitz, Sabine (2023-08-31). "Synthesis, Structure and Physical Properties of the Most Sodium‐Rich Phosphidogermanate Na8GeP4". Zeitschrift für anorganische und allgemeine Chemie. doi: 10.1002/zaac.202300166 . ISSN   0044-2313.
  6. 1 2 Eickhoff, Henrik; Strangmüller, Stefan; Klein, Wilhelm; Kirchhain, Holger; Dietrich, Christian; Zeier, Wolfgang G.; van Wüllen, Leo; Fässler, Thomas F. (2018-09-25). "Lithium Phosphidogermanates α- and β-Li 8 GeP 4 —A Novel Compound Class with Mixed Li + Ionic and Electronic Conductivity". Chemistry of Materials. 30 (18): 6440–6448. doi:10.1021/acs.chemmater.8b02759. ISSN   0897-4756. S2CID   106211828.
  7. Strangmüller, Stefan; Eickhoff, Henrik; Raudaschl-Sieber, Gabriele; Kirchhain, Holger; Sedlmeier, Christian; van Wüllen, Leo; Gasteiger, Hubert A.; Fässler, Thomas F. (2020-08-25). "Modifying the Properties of Fast Lithium-Ion Conductors—The Lithium Phosphidotetrelates Li 14 SiP 6 , Li 14 GeP 6 , and Li 14 SnP 6". Chemistry of Materials. 32 (16): 6925–6934. doi:10.1021/acs.chemmater.0c02052. ISSN   0897-4756. S2CID   225445668.
  8. Eickhoff, H.; Klein, W.; Toffoletti, L.; Raudaschl‐Sieber, G.; Fässler, T. F. (2022-05-25). "Planar Si 5 and Ge 5 Pentagons beside Isolated Phosphide Anions in Lithium Phosphide Tetrelides Li 10+x Si 5 P and Li 10+x Ge 5 P". Zeitschrift für anorganische und allgemeine Chemie. 648 (10). doi: 10.1002/zaac.202100376 . ISSN   0044-2313. S2CID   246183043.
  9. Feng, Kai; Yin, Wenlong; He, Ran; Lin, Zheshuai; Jin, Shifeng; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (2012). "NaGe 3 P 3 : a new ternary germanium phosphide featuring an unusual [Ge 3 P 7 ] ring". Dalton Trans. 41 (2): 484–489. doi:10.1039/C1DT11345C. ISSN   1477-9226. PMID   22042509.
  10. 1 2 Eickhoff, Henrik; Hlukhyy, Viktor; Fässler, Thomas F. (2020-11-30). "Na 2 Ge 3 P 3 and Na 5 Ge 7 P 5 Comprising Heteroatomic Polyanions Mimicking the Structure of Fibrous Red Phosphorus". Zeitschrift für anorganische und allgemeine Chemie. 646 (22): 1834–1838. doi:10.1002/zaac.202000316. ISSN   0044-2313. S2CID   225006755.
  11. Roesky, Herbert W.; Noltemeyer, Mathias; Sheldrick, George M. (1985-07-01). "Synthese und Struktur des Trifluoracetyldicyanomethanids". Zeitschrift für Naturforschung B. 40 (7): 883–890. doi: 10.1515/znb-1985-0706 . ISSN   1865-7117. S2CID   95632691.
  12. Hailing, Tu; Saunders, G.A.; Omar, M.S.; Pamplin, B.R. (January 1984). "The elastic behaviour of the ternary zincblende structure semiconductor CuGe2P3". Journal of Physics and Chemistry of Solids. 45 (2): 163–172. Bibcode:1984JPCS...45..163H. doi:10.1016/0022-3697(84)90115-X.
  13. Boyd, G. D.; Buehler, E.; Storz, F. G. (1971-04-01). "LINEAR AND NONLINEAR OPTICAL PROPERTIES OF ZnGeP2 AND CdSe". Applied Physics Letters. 18 (7): 301–304. Bibcode:1971ApPhL..18..301B. doi:10.1063/1.1653673. ISSN   0003-6951.
  14. Carnio, B. N.; Zhang, M.; Zawilski, K. T.; Schunemann, P. G.; Moutanabbir, O.; Elezzabi, A. Y. (19 May 2023). "Intra-pulse difference frequency generation in ZnGeP2 for high-frequency terahertz radiation generation". Scientific Reports. 13 (1): 8161. Bibcode:2023NatSR..13.8161C. doi:10.1038/s41598-023-35131-6. PMC   10199089 . PMID   37208445.
  15. Buehler, E.; Wernick, J. H.; Wiley, J. D. (August 1973). "The ZnP2-Ge system and growth of single crystals of ZnGeP2". Journal of Electronic Materials. 2 (3): 445–454. Bibcode:1973JEMat...2..445B. doi:10.1007/BF02660148. ISSN   0361-5235. S2CID   94941316.
  16. Nowak, E.; Neumann, H.; Omar, M. S. (January 1988). "Heat capacity of Ag6Ge10p12 from 180 to 550 K". Crystal Research and Technology. 23 (1): 103–106. doi:10.1002/crat.2170230114.
  17. Nuss, Jürgen; Wedig, Ulrich; Xie, Wenjie; Yordanov, Petar; Bruin, Jan; Hübner, Ralph; Weidenkaff, Anke; Takagi, Hidenori (2017-08-22). "Phosphide–Tetrahedrite Ag 6 Ge 10 P 12 : Thermoelectric Performance of a Long-Forgotten Silver-Cluster Compound". Chemistry of Materials. 29 (16): 6956–6965. doi:10.1021/acs.chemmater.7b02474. ISSN   0897-4756.
  18. Namiki, H.; Kobayashi, M.; Nagata, K.; Saito, Y.; Tachibana, N.; Ota, Y. (June 2022). "Relationship between the density of states effective mass and carrier concentration of thermoelectric phosphide Ag6Ge10P12 with strong mechanical robustness". Materials Today Sustainability. 18: 100116. doi: 10.1016/j.mtsust.2022.100116 . S2CID   246977030.
  19. Masumoto, K.; Isomura, S.; Goto, W. (November 1966). "The preparation and properties of ZnSiAs2, ZnGeP2 and CdGeP2 semiconducting compounds". Journal of Physics and Chemistry of Solids. 27 (11–12): 1939–1947. Bibcode:1966JPCS...27.1939M. doi:10.1016/0022-3697(66)90124-7.
  20. Eisenmann, Brigitte; Klein, Jürgen; Somer, Mehmet (January 1990). "Anions Isosteric with CO32− in Cs5SiP3, Cs5SiAs3, Cs5GeP3, and Cs5GeAs3". Angewandte Chemie International Edition in English. 29 (1): 87–88. doi:10.1002/anie.199000871. ISSN   0570-0833.
  21. Chen, Jindong; Lin, Chensheng; Peng, Guang; Xu, Feng; Luo, Min; Yang, Shunda; Shi, Shuangshuang; Sun, Yingshuang; Yan, Tao; Li, Bingxuan; Ye, Ning (2019-12-24). "BaGe 2 Pn 2 (Pn = P, As): Two Congruent-Melting Non-chalcopyrite Pnictides as Mid- and Far-Infrared Nonlinear Optical Materials Exhibiting Large Second Harmonic Generation Effects". Chemistry of Materials. 31 (24): 10170–10177. doi:10.1021/acs.chemmater.9b03863. ISSN   0897-4756. S2CID   212863749.