Phosphorus trioxide

Last updated
Phosphorus(III) oxide
Phosphorus-trioxide-from-xtal-3D-balls.png
Phosphorus in orange, oxygen in red
Phosphorus-trioxide-xtal-3D-balls-A.png
Names
IUPAC names
Tetraphosphorus hexaoxide
Tricyclo[3.3.1.13,7]tetraphosphoxane
Systematic IUPAC name
2,4,6,8,9,10-Hexaoxa-1,3,5,7-tetraphosphatricyclo[3.3.1.13,7]decane
Other names
Phosphorus sesquioxide
Phosphorous anhydride
Tetraphosphorous hexoxide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.032.414 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-670-5
26856
PubChem CID
UNII
  • InChI=1S/O6P4/c1-7-2-9-4-8(1)5-10(3-7)6-9 Yes check.svgY
    Key: VSAISIQCTGDGPU-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/O6P4/c1-7-2-9-4-8(1)5-10(3-7)6-9
    Key: VSAISIQCTGDGPU-UHFFFAOYAV
  • O1P3OP2OP(OP1O2)O3
Properties
P4O6
Molar mass 219.88 g mol−1
Appearancecolourless monoclinic crystals or liquid
Density 2.135 g/cm3
Melting point 23.8 °C (74.8 °F; 296.9 K)
Boiling point 173.1 °C (343.6 °F; 446.2 K)
reacts
Acidity (pKa)9.4
Structure
See Text
0
Hazards
GHS labelling:
GHS-pictogram-skull.svg
Danger
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
0
0
Related compounds
Other anions
Phosphorus trisulfide
Other cations
Dinitrogen trioxide
Arsenic trioxide
Antimony trioxide
Related compounds
Phosphorus pentoxide
Phosphorous acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Phosphorus trioxide is the chemical compound with the molecular formula P4O6. Although the molecular formula suggests the name tetraphosphorus hexoxide, the name phosphorus trioxide preceded the knowledge of the compound's molecular structure, and its usage continues today. This colorless solid is structurally related to adamantane. It is formally the anhydride of phosphorous acid, H3PO3, but cannot be obtained by the dehydration of the acid. A white solid that melts at room temperature, it is waxy, crystalline and highly toxic, with garlic odor. [1]

Contents

Preparation

It is obtained by the combustion of phosphorus in a limited supply of air at low temperatures.

P4 + 3 O2 → P4O6

By-products include red phosphorus suboxide. [1]

Chemical properties

Phosphorus trioxide reacts with water to form phosphorous acid, reflecting the fact that it is the anhydride of that acid. [2]

P4O6 + 6 H2O → 4 H3PO3

It reacts with hydrogen chloride to form H3PO3 and phosphorus trichloride.

P4O6 + 6 HCl → 2 H3PO3 + 2 PCl3

With chlorine or bromine it forms the corresponding phosphoryl halide, and it reacts with iodine in a sealed tube to form diphosphorus tetraiodide. [1]

P4O6 reacts with ozone at 195 K to give the unstable compound P4O18. [3]

Reaction of phosphoprus trioxide with ozone.png

P4O18 decomposes above 238 K in solution with the release of O2 gas. Decomposition of dry P4O18 is explosive.

In a disproportionation reaction, P4O6 is converted into the mixed P(III)P(V) species P4O8 when heated in a sealed tube at 710 K, with the side product being red phosphorus. [3]

As a ligand

Structure of P4O6*Fe(CO)4. Phosphorus-trioxide-iron-tetracarbonyl-complex-from-xtal-3D-balls.png
Structure of P4O6·Fe(CO)4.

P4O6 is a ligand for transition metals, comparable to phosphite. An illustrative complex is P4O6·Fe(CO)4. [4] With BH3, a dimeric adduct is produced: [3]

Liquid and solid phosphorus trioxide at its melting point P4O6 photo (5).jpg
Liquid and solid phosphorus trioxide at its melting point
Structure of P8O12(BH3)2. Adduct of phosphorus oxide with BH3.png
Structure of P8O12(BH3)2.


Related Research Articles

Sulfur trioxide (alternative spelling sulphur trioxide, also known as nisso sulfan) is the chemical compound with the formula SO3. It has been described as "unquestionably the most [economically important]" sulfur oxide. It is prepared on an industrial scale as a precursor to sulfuric acid.

<span class="mw-page-title-main">Dinitrogen pentoxide</span> Chemical compound

Dinitrogen pentoxide is the chemical compound with the formula N2O5. It is one of the binary nitrogen oxides, a family of compounds that only contain nitrogen and oxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.

An acidic oxide is an oxide that either produces an acidic solution upon addition to water, or acts as an acceptor of hydroxide ions effectively functioning as a Lewis acid. Acidic oxides will typically have a low pKa and may be inorganic or organic. A commonly encountered acidic oxide, carbon dioxide produces an acidic solution when dissolved.

<span class="mw-page-title-main">Oxygen difluoride</span> Chemical compound

Oxygen difluoride is a chemical compound with the formula OF2. As predicted by VSEPR theory, the molecule adopts a bent molecular geometry. It is a strong oxidizer and has attracted attention in rocketry for this reason. With a boiling point of −144.75 °C, OF2 is the most volatile (isolable) triatomic compound. The compound is one of many known oxygen fluorides.

<span class="mw-page-title-main">Dichlorine heptoxide</span> Chemical compound

Dichlorine heptoxide is the chemical compound with the formula Cl2O7. This chlorine oxide is the anhydride of perchloric acid. It is produced by the careful distillation of perchloric acid in the presence of the dehydrating agent phosphorus pentoxide:

<span class="mw-page-title-main">Phosphorus triiodide</span> Chemical compound

Phosphorus triiodide (PI3) is an inorganic compound with the formula PI3. A red solid, it is too unstable to be stored; it is, nevertheless, commercially available. It is widely used in organic chemistry for converting alcohols to alkyl iodides. It is also a powerful reducing agent. Note that phosphorus also forms a lower iodide, P2I4, but the existence of PI5 is doubtful at room temperature.

<span class="mw-page-title-main">Phosphorous acid</span> Chemical compound (H3PO4)

Phosphorous acid is the compound described by the formula H3PO3. This acid is diprotic, not triprotic as might be suggested by this formula. Phosphorous acid is an intermediate in the preparation of other phosphorus compounds. Organic derivatives of phosphorous acid, compounds with the formula RPO3H2, are called phosphonic acids.

<span class="mw-page-title-main">Phosphorus pentoxide</span> Chemical compound

Phosphorus pentoxide is a chemical compound with molecular formula P4O10 (with its common name derived from its empirical formula, P2O5). This white crystalline solid is the anhydride of phosphoric acid. It is a powerful desiccant and dehydrating agent.

<span class="mw-page-title-main">Arsenous acid</span> Chemical compound

Arsenous acid (or arsenious acid) is the inorganic compound with the formula H3AsO3. It is known to occur in aqueous solutions, but it has not been isolated as a pure material, although this fact does not detract from the significance of As(OH)3.

<span class="mw-page-title-main">Arsenic pentoxide</span> Chemical compound

Arsenic pentoxide is the inorganic compound with the formula As2O5. This glassy, white, deliquescent solid is relatively unstable, consistent with the rarity of the As(V) oxidation state. More common, and far more important commercially, is arsenic(III) oxide (As2O3). All inorganic arsenic compounds are highly toxic and thus find only limited commercial applications.

<span class="mw-page-title-main">Xenon trioxide</span> Chemical compound

Xenon trioxide is an unstable compound of xenon in its +6 oxidation state. It is a very powerful oxidizing agent, and liberates oxygen from water slowly, accelerated by exposure to sunlight. It is dangerously explosive upon contact with organic materials. When it detonates, it releases xenon and oxygen gas.

<span class="mw-page-title-main">Manganese heptoxide</span> Chemical compound

Manganese(VII) oxide (manganese heptoxide) is an inorganic compound with the formula Mn2O7. Manganese heptoxide is a volatile liquid with an oily consistency. It is a highly reactive and powerful oxidizer that reacts explosively with nearly any organic compound. It was first described in 1860. It is the acid anhydride of permanganic acid.

Selenium trioxide is the inorganic compound with the formula SeO3. It is white, hygroscopic solid. It is also an oxidizing agent and a Lewis acid. It is of academic interest as a precursor to Se(VI) compounds.

<span class="mw-page-title-main">Selenium compounds</span> Chemical compounds containing selenium

Selenium compounds are compounds containing the element selenium (Se). Among these compounds, selenium has various oxidation states, the most common ones being −2, +4, and +6. Selenium compounds exist in nature in the form of various minerals, such as clausthalite, guanajuatite, tiemannite, crookesite etc., and can also coexist with sulfide minerals such as pyrite and chalcopyrite. For many mammals, selenium compounds are essential. For example, selenomethionine and selenocysteine are selenium-containing amino acids present in the human body. Selenomethionine participates in the synthesis of selenoproteins. The reduction potential and pKa (5.47) of selenocysteine are lower than those of cysteine, making some proteins have antioxidant activity. Selenium compounds have important applications in semiconductors, glass and ceramic industries, medicine, metallurgy and other fields.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

<span class="mw-page-title-main">Dichlorine hexoxide</span> Chemical compound

Dichlorine hexoxide is the chemical compound with the molecular formula Cl
2
O
6
, which is correct for its gaseous state. However, in liquid or solid form, this chlorine oxide ionizes into the dark red ionic compound chloryl perchlorate [ClO
2
]+
[ClO
4
]
, which may be thought of as the mixed anhydride of chloric and perchloric acids.

<span class="mw-page-title-main">Dinitrogen trioxide</span> Chemical compound

Dinitrogen trioxide is the inorganic compound with the formula N2O3. It is a nitrogen oxide. It forms upon mixing equal parts of nitric oxide and nitrogen dioxide and cooling the mixture below −21 °C (−6 °F):

<span class="mw-page-title-main">Polonium dioxide</span> Chemical compound

Polonium dioxide (also known as polonium(IV) oxide) is a chemical compound with the formula PoO2. It is one of three oxides of polonium, the other two being polonium monoxide (PoO) and polonium trioxide (PoO3). It is a pale yellow crystalline solid at room temperature. Under lowered pressure (such as a vacuum), it decomposes into elemental polonium and oxygen at 500 °C. It is the most stable oxide of polonium and is an interchalcogen.

<span class="mw-page-title-main">Hypophosphoric acid</span> Chemical compound

Hypophosphoric acid is a mineral acid with the formula H4P2O6, with phosphorus in a formal oxidation state of +4. In the solid state it is present as the dihydrate, H4P2O6·2H2O. In hypophosphoric acid the phosphorus atoms are identical and joined directly with a P−P bond. Isohypophosphoric acid is a structural isomer of hypophosphoric acid in which one phosphorus has a hydrogen directedly bonded to it and that phosphorus atom is linked to the other one by an oxygen bridge to give a phosphorous acid/phosphoric acid mixed anhydride. The two phosphorus atoms are in the +3 and +5 oxidation states, respectively.

Rhenium compounds are compounds formed by the transition metal rhenium (Re). Rhenium can form in many oxidation states, and compounds are known for every oxidation state from -3 to +7 except -2, although the oxidation states +7, +4, and +3 are the most common. Rhenium is most available commercially as salts of perrhenate, including sodium and ammonium perrhenates. These are white, water-soluble compounds. The tetrathioperrhenate anion [ReS4] is possible.

References

  1. 1 2 3 A. F. Holleman; Wiberg, Egon; Wiberg, Nils (2001). Inorganic Chemistry. Boston: Academic Press. ISBN   0-12-352651-5.
  2. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  3. 1 2 3 .Catherine E. Housecroft; Alan G. Sharpe (2008). "Chapter 15: The group 15 elements". Inorganic Chemistry, 3rd Edition. Pearson. p. 473. ISBN   978-0-13-175553-6.
  4. M. Jansen & J. Clade (November 1996). "Tetracarbonyl(tetraphosphorus hexoxide)iron". Acta Crystallogr. C. 52 (11): 2650–2652. doi: 10.1107/S0108270196004398 .